University of Minnesota
University of Minnesota
College of Biological Sciences
http://www.cbs.umn.edu/

E141 - BioCON: Biodiversity, CO2, and Nitrogen

 

Introduction

 

CO2, Nitrogen, and Biodiversity Many ecosystems around the world are experiencing simultaneous increases in atmospheric CO2 levels and N deposition, and decreases in biodiversity. The potential importance of these aspects of global environmental change, coupled with a lack of understanding of their interactions (Vitousek 1994), led us to develop the long-term BioCON experiment, which addresses the direct and interactive effects on grassland ecosystems of elevated CO2, added N, and varying plant diversity, including shifts in both richness and composition (e.g., Reich et al. 2001ac, 2004, 2006ab). The BioCON project addresses basic scientific questions about coupled biogeochemical cycles, biodiversity, and other issues while also providing information relevant to society about the implications of these global change variables.

BioCON focuses on 4 key questions: (1) Do CO2 and N interact at physiological, whole plant, multitrophic, community and/or biogeochemical scales, on short- and long-term time horizons? (2) Do plant species and/or functional group diversity and composition influence responses to CO2 and N? (3) Are there linear or non-linear temporal changes in effects of treatments on individual, community, or ecosystem metrics? (4) What mechanisms (physiological, biotic interaction, biogeochemical, etc.) explain the patterns observed in addressing questions 1-3? In other words, how does the integration of plant, consumer, mutualist, and decomposer interactions at multiple temporal scales lead to the responses observed at tissue to ecosystem scales across various time scales?

The BioCON experiment (E141) directly manipulates plant species numbers (1, 4, 9, or 16 perennial grassland species randomly chosen from a pool of 16 species, planted as seed in 1997), soil N availability (ambient soil vs. ambient soil + 4 g N m-2 yr-1), and atmospheric CO2 concentrations (ambient vs. +180 ppm, beginning in 1998) in a well-replicated split-plot experiment. It includes 296 individual plots, each 2 m x 2 m, in six 20-m diameter rings, three exposed to ambient CO2 and three to elevated CO2 using freeair CO2 enrichment. Additional fully factorial experiments (many plots serve multiple experiments) include tests of species composition (in monoculture) x CO2 x N (n=128 plots, Reich et al. 2001c), functional group composition x CO2 x N (n=176, Reich et al. 2004), species richness x CO2 x N at a standard functional group richness (n=176), and functional group richness x CO2 x N controlling for species richness (n=123).

Global change-related shifts in temperature, precipitation, atmospheric CO2, and N deposition will each likely impact terrestrial ecosystem processes, however the effects of each global change element alone may be influenced by other global change factors, via antagonistic and synergistic impacts and by indirect effects on soil resources and soil biota that modulate subsequent ecosystem responses. Yet, considerable uncertainty exists regarding the direction, magnitude, and ubiquity of such interactions, posing a significant challenge for predicting ecosystem feedbacks to multiple global change drivers. In 2007, we began a 5-year sub-experiment examining interactions of CO2, N and water availability. The water manipulation (ambient and -45% rainfall, achieved via temporary, portable rainout shelters) was added to the ongoing CO2 x N treatments that began in 1998. The objective of a new BioCON research subexperiment is to incorporate experimental warming into the ongoing grassland manipulation of precipitation, CO2, and N to elucidate their interactive effects on long-term ecosystem response. The WWCON experiment is thus designed to determine the direct and interactive effects of warming, water, CO2 and N on the productivity, biogeochemical cycling, and dynamics of plant and soil communities in a perennial grassland ecosystem. WWCON uses 48 plots from BioCON, all originally planted with 9 species in 1998.

Key Results

 

BioCON is a highly productive experiment that led to 44 peer-reviewed papers during our current award. Its most novel element is the simultaneous, long-term manipulation of and examination of effects of multiple global change drivers on ecosystem processes ranging from plant physiology to plant and soil communities to ecosystem biogeochemistry. BioCON is to our knowledge one of only three studies in the world capable of providing long-term evidence on joint effects of CO2 and N on biodiversity and ecosystem function, and the only experiment involving either CO2 or N and biodiversity. Here we highlight its two most important findings of the past 6 years.

(1) CO2 and N interact non-additively in influencing plant biodiversity (Fig. 7; Reich 2009). Over 10 years, elevated N reduced species richness by 16% at ambient CO2 but by just 8% at elevated CO2.This resulted from multiple effects of CO2 and N on plant traits and soil resources that altered competitive interactions among species. Results of this study have important implications for natural ecosystems under global change, because they demonstrated that altered CO2 and N regimes had significant, interactive, persistent impacts on species diversity resulting from direct, but mostly indirect effects on plant and ecosystem processes. The sensitivity of plant diversity to factors that themselves were sensitive to CO2 and N suggests that predicting responses of biodiversity at local scales may be challenging, as responses to multiple global change drivers may not be generally predictable from the responses to each alone.

(2) Nitrogen limitation of plant growth, which is common worldwide, constrains biomass responses to CO2 over the long-term (Reich et al. 2006ab, Reich and Hobbie In Prep) (Fig. 5). In 2007, the Intergovernmental Panel on Climate Change (IPCC) stated that the largest uncertainty in the global C cycle – and hence a key to predicting future climate change – involves the size of the so-called CO2 fertilization effect. Although photosynthesis and plant productivity generally increase with rising CO2 levels in most plant communities, whether this response will decelerate or "saturate" is not known, and hence we lack the ability to predict the fraction of future global C emissions that terrestrial ecosystems acquire and store. The long-term constraint on the CO2 fertilization effect due to natural N limitation confirms a key criticism (Hungate et al. 2003) of earlier IPCC efforts.

Overall BioCON provides a platform for examining the myriad processes that contribute to interactions such as described above. For instance, the long-term interacting effect of CO2 and N on biomass and biodiversity occur despite a lack of CO2 x N interaction on photosynthesis (Lee et al. 2011) and likely result from complex effects of species identity and diversity, along with CO2 and N, on belowground communities and processes (e.g., Dijkstra et al. 2006a, 2007, West et al. 2006, He et al. 2010, 2012, Chung et al. 2007, 2009, Adair et al. 2009, 2011, Reich 2009, Antoninka et al. 2011, Schnitzer et al. 2011, Reid et al. 2012, Deng et al. 2012; Fig. 21). Collectively, these findings have important implications globally. For instance, because of N limitation and biodiversity losses, global estimates of potential C sequestration in the face of rising CO2 may be currently considerably over-estimated. If this is true, atmospheric CO2 concentrations (and associated global temperatures) may increase more quickly than anticipated. BioCON data have been important in broader analyses, syntheses, and meta-analyses of biodiversity, N, and CO2 effects (Reich et al. 2006b, Isbell et al. 2011, Schnitzer et al. 2011) and development of global databases (Kattge et al. 2011). In addition, a team of non-CDR researchers used results of CDR decomposition studies (data downloaded from our website) in analyzing the effects of plant biodiversity on decomposition rates (Srivastava et al. 2009).

(3) Results to date of the water manipulation include a near total elimination of the CO2 effect on productivity when both water and N are limited (Reich et al. Submitted) and complex pathways by which the resource treatments directly and indirectly drive trophic networks belowground (Eisenhauer et al. 2012). These include both direct effects of CO2 and N on the abundance and diversity of soil animals, as well as indirect effects mediated by changes in other abiotic and biotic components of the soil environment (Fig. 22).

Future Research

 

Because the responses to CO2, N, and diversity have been highly dynamic temporally (Reich et al. 2006a, Reich and Hobbie In Prep), this experiment will continue providing valuable insights into the interactive effects of multiple global change factors. As one of the longest running multiple global change factor open-air experiments in the world, the results will be among the best available for showing the long-term impacts of such drivers on population, community, and ecosystem responses. Thus, we propose continued annual measurement of many plant, soil, community, and ecosystem variables across all 370 plots each year.

In addition, we will expand analyses of soil communities and trophic interactions, including their response to global change, and impacts on ecosystem structure and function, building on early and ongoing work at BioCON (e.g. Chung et al. 2009, He et al. 2010, 2012, Deng et al. 2012, Eisenhauer et al. 2012, Weisenhorn submitted, Weisenhorn et al. In Prep). This will include use of molecular tools to characterize both bulk soils and the rhizosphere microbiome (e.g., functional gene arrays, 454 pyrosequencing, and 16s ribotyping) in collaboration with research groups led by J. Zhou (Oklahoma), J. Dangl (U. North Carolina), and C. Henry (Argonne National Laboratory). It will also include a comprehensive plan to improve the mechanistic understanding of soil multitrophic interactions in shaping the relationship between producer diversity and ecosystem functioning under varying CO2 and N conditions. This collaborative project will be led by N. Eisenhauer (Technische Universit├Ąt Darmstadt, Germany), and it comprises several complementary subprojects, including experimental tests of the significance of positive and negative soil feedback effects across biodiversity, CO2, and N combinations.

The new warming manipulation (3°C) will be added in 2012, resulting in a CO2 x N x water x temperature factorial experiment. The study is largely funded through a grant from the NSF Ecosystems program, but will be available as a platform for LTER-related investigations, e.g., by undergraduates, graduate students, and post-docs, just as the core BioCON experiment has been. It will test the overarching hypothesis that global change drivers interact, such that responses will not simply be additive. Unlike interactions of CO2, N, and water, for which multiple limitation theory provides a relatively simple conceptual framework, experimental warming will induce different responses during cool vs. warm, or wet vs. dry, times during the growing season, with myriad possible pathways for interactions. For all four of the treatments, interactions will be influenced by the effects of drivers on the availability of soil resources and on soil biota, and by weather in each specific growing season. Warming will be imposed on a subset of species-rich plots in BioCON, to achieve a 2 x 2 x 2 x 2 factorial manipulation of temperature (ambient and +3°C), growing season precipitation (ambient and -45% rainfall, achieved via temporary rainout shelters), CO2 (ambient and +180 ppm, achieved via FACE technology), and N (ambient and +4 g N m-2 y-1).

Simultaneous soil and vegetation warming will be achieved by synchronized deployment of infrared heat lamps that warm aboveground plant structures, and a network of low-profile, buried electric pins that concurrently warm the soil to 0.75 m deep. Integrated microprocessor-based feedback control will maintain a fixed temperature differential (+3°C) between warmed and ambient control plots. We have successfully deployed similar technology in an experiment in the southern boreal forest in northern Minnesota (Reich et al. submitted, http://forestecology.cfans.umn.edu/B4WARMED.html). The new study will determine the interactive effects of these four global change factors on a suite of responses including: plant physiology, NPP, phenology, symbiotic N fixation, soil N availability, soil CO2 flux, soil food webs, as well as the soil microenvironment. This project will provide one of the few empirical datasets describing the interactive effects of multiple important human-caused global change factors on terrestrial ecosystem processes, thereby enhancing mechanistic understanding of the ecological impacts of global change and informing models that aim to predict biotic feedbacks to such change.

 

Methods for e141

 

Datasets for e141: BioCON : Biodiversity, Elevated CO2, and N Enrichment

Dataset IDTitleRange of Years (# years with data)
acye1411996 Ring soil texture, pH and Cation Exchange Capacity (CEC)1996-1996 (1 year)
acie141Carbon respiration from soil incubation2007-2007 (1 year)
aele141June aboveground 15N isotope, total N and delta 15N 2000-2012 (8 years)
aeje141Leaf 15N isotope, total N and delta 15N from 9 species water treatment plots2008-2011 (4 years)
aeke141Leaf delta 13C and total C from 9 species water treatment plots2008-2010 (3 years)
aeoe141Leaf net photosynthesis in CO2 x N x water treatment combinations2007-2010 (4 years)
aege141Light and heavy soil fraction total N and delta 15N2002-2002 (1 year)
afce141Litter biomass carbon nitrogen from water treatment plots2008-2010 (3 years)
aake141Lupinus Transgenerational Effects2006-2006 (1 year)
acfe141Lysimeter Water Treatment Plots2009-2010 (2 years)
lye141Lysimeter data2003-2005 (3 years)
aeie141Monoculture species green leaf total N and delta 15N2002-2002 (1 year)
nie141N15 isotope in plants1999-2000 (2 years)
mre141Nitrogen mineralization rate1998-2014 (17 years)
adue141Oak leaf water potential2012-2012 (1 year)
afde141Oak seedling survival 2002-2004 (2 years)
afpe141Patch Level Phenophase Measurements2012-2016 (5 years)
lpe141Percent light penetration1998-2016 (19 years)
phoe141Photosynthesis (A max, etc.)1998-2013 (16 years)
acce141Photosynthesis Leaf Carbon and Nitrogen1998-2008 (11 years)
aewe141Photosynthesis of Bromus inermis and Andropogon gerardi under treatment combinations of CO2 x Warm in 9 species plots2013-2014 (2 years)
afke141Photosynthetic CO2 response curves at controlled light, CO2 and temperatures1998-1998 (1 year)
nbe141Plant aboveground biomass carbon and nitrogen1998-2014 (16 years)
ple141Plant aboveground biomass data1998-2016 (19 years)
pce141Plant species percent cover data1998-2016 (19 years)
aale141Poa Transgenerational Effects2006-2006 (1 year)
sachmie141Reproduction data for Achillea millefolium2002-2016 (2 years)
samocae141Reproduction data for Amorpha canescens2006-2016 (8 years)
sasctue141Reproduction data for Asclepias tuberosa2007-2016 (7 years)
slescae141Reproduction data for Lespedeza capitata2001-2012 (12 years)
sluppee141Reproduction data for Lupinus perennis2001-2016 (12 years)
spetvie141Reproduction data for Petalostemum villosum2006-2012 (7 years)
ssolrie141Reproduction data for Solidago rigida2001-2012 (9 years)
sgrasse141Reproduction data for grasses2002-2016 (10 years)
roote141Root biomass data1998-2016 (19 years)
nre141Root carbon/nitrogen data1998-2014 (16 years)
rie141Root ingrowth biomass1998-2016 (19 years)
aame141Schizachyrium Transgenerational Effects2006-2006 (1 year)
swe141Seed weight 2001-2002 (2 years)
aese141Soil Organisms2010-2010 (1 year)
nhe141Soil ammonium1998-2002 (5 years)
bde141Soil bulk density2003-2004 (2 years)
scfe141Soil carbon flux1998-2016 (19 years)
afqe141Soil metagenome fungal responses to elevated CO22009-2009 (1 year)
hoe141Soil moisture1998-2016 (19 years)
nohe141Soil nitrate and ammonium1998-2002 (5 years)
sphe141Soil pH1999-2014 (16 years)
ne141Soil percent nitrogen and carbon2002-2012 (3 years)
slae141Specific Leaf Area2001-2001 (1 year)
ache141Total and non-hydrolyzable soil carbon and nitrogen 2007-2007 (1 year)
acbe141Vac Sampling aphids2000-2002 (3 years)
acae141Vac Sampling arthropod community 2001-2003 (3 years)
 


Selected Recent Publications


Ghimire, B., Riley, W. J., Koven, C. D., Kattge, J., Rogers, A., Reich, P. B. and Wright, I. J. (2017), A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecol Appl. Accepted Author Manuscript. doi:10.1002/eap.1542 2017 e141

Hungate, B. A., Barbier, E. B., Ando, A. W., Marks, S. P., Reich, P. B., van Gestel, N., Tilman, D., Knops, J. M. H., Hooper, D. U., Butterfield, B. J. and Cardinale, B. J. (2017). "The economic value of grassland species for carbon storage." Science Advances 3(4): e1601880. 2017 e120 e141

Tu, Qichao, He, Zhili, Wu, Liyou, Xue, Kai, Xie, Gary, Chain, Patrick, Reich, Peter B., Hobbie, Sarah E., Zhou, Jizhong. Metagenomic reconstruction of nitrogen cycling pathways in a CO 2-enriched grassland ecosystem. Soil Biology and Biochemistry 106, 99-108 2017 e141

Wei, X., Reich, P. B., Hobbie, S. E., & Kazanski, C. E. (2017). Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Global Change Biology, Accepted manuscript online. doi:10.1111/gcb.13757 2017 e141

Yue, K., Fornara, D. A., Yang, W., Peng, Y., Peng, C., Liu, Z., & Wu, F. (2017). Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters, Early View. doi:10.1111/ele.12767 2017 e141

Andresen, L. C.; Muller, C.; de Dato, G.; Dukes, J. S.; Emmett, B. A.; Estiarte, M.; Jentsch, A.; Kroel-Dulay, G.; Luscher, A.; Niu, S.; Penuelas, J.; Reich, P. B.; Reinsch, S.; Ogaya, R.; Schmidt, I. K.; Schneider, M. K.; Sternberg, M.; Tietema, A.; Zhu, K.; Bilton, M. C. "Shifting Impacts of Climate Change." In Advances in Ecological Research, vol 55, Large-Scale Ecology: Model Systems to Global Perspectives, ed. Rebecca; Dumbrell Kordas, Alex; Woodward, Guy, 437-73: Elsevier Ltd 2016 [Abstract] e141

Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang, L., Machmuller, M. B., Mohan, J. , Panetta, A. M. , Reich, P. B. , Reinsch, S. , Wang, X. , Allison, S. D. , Bamminger, C., Bridgham, S., Collins, S. L., de Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M. , Harte, J. , Henderson, A. , Johnson, B. R. , Larsen, K. S. , Luo, Y. , Marhan, S., Melillo, J. M., Penuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B., Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V. and Tietema, A. (2016) "Temperature response of soil respiration largely unaltered with experimental warming." Proceedings of the National Academy of Sciences 113(48): 13797-13802. 2016 e141

Chalk, Phillip M.; Lam, Shu K.; Chen, Deli. 15N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review. Sci.Total Environ., 2016 in press doi:10.1016/j.scitotenv.2016.07.030 2016 [Full Text] e141

Crowther, T. W. , Todd-Brown, K. E. O. , Rowe, C. W. , Wieder, W. R. , Carey, J. C. , Machmuller, M. B. , Snoek, B. L. , Fang, S. , Zhou, G. , Allison, S. D. , Blair, J. M. , Bridgham, S. D. , Burton, A. J. , Carrillo, Y. , Reich, P. B. , Clark, J. S. , Classen, A. T. , Dijkstra, F. A. , Elberling, B. , Emmett, B. A. , Estiarte, M. , Frey, S. D. , Guo, J. , Harte, J. , Jiang, L. , Johnson, B. R. , Kroel-Dulay, G. , Larsen, K. S. , Laudon, H. , Lavallee, J. M. , Luo, Y. , Lupascu, M. , Ma, L. N. , Marhan, S. , Michelsen, A. , Mohan, J. , Niu, S. , Pendall, E. , Penuelas, J. , Pfeifer-Meister, L. , Poll, C. , Reinsch, S. , Reynolds, L. L. , Schmidt, I. K. , Sistla, S. , Sokol, N. W. , Templer, P. H. , Treseder, K. K. , Welker, J. M. and Bradford, M. A. (2016). "Quantifying global soil carbon losses in response to warming." Nature 540(7631): 104-108. 2016 e141

Deng, Y., He, Z., Xiong, J., Yu, H., Xu, M., Hobbie, S. E., Reich, P. B., Schadt, C. W., Kent, A., Pendall, E., Wallenstein, M. and Zhou, J. (2016). Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biology 22(2): 957-964. 2016 [Full Text] e141

Kleynhans E. J.; Otto, S. P.; Reich, P. B.; Vellend, M. (2016) Adaptation to elevated CO2 in different biodiversity contexts. Nature Communications 7: 12358. 2016 [Full Text] e141

O`Connor, Mary I.; Gonzalez, Andrew; Byrnes, Jarrett E. K.; Cardinale, Bradley J.; Duffy,J. Emmett; Gamfeldt, Lars; Griffin, John N.; Hooper, David; Hungate, Bruce A.; Paquette, Alain; Thompson, Patrick L.; Dee, Laura E.; Dolan, Kristin L. A general biodiversity-function relationship is mediated by trophic level. Oikos, 2016, doi/10.1111/oik.03652 2016 e120 e123 e141

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. and Prentice, I. C. (2016). "Mycorrhizal association as a primary control of the CO2 fertilization effect." Science 353(6294): 72. 2016 [Full Text] e141

Tu, Qichao; Zhou, Xishu; He, Zhili; Xue, Kai; Wu, Liyou; Reich, Peter; Hobbie, Sarah; Zhou, Jizhong. (2016) The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem. Microbial Ecology 71(3):604-615. http://dx.doi.org/10.1007/s00248-015-0659-7 2016 [Full Text] e141

De Kauwe, Martin G.;Yan-Shih, Lin; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I.Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, U.; Serbin, Shawn P.; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F.Yoko; Domingues, Tomas F. A test of the `one-point method` for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytologist 210(3): 1130-1144. 2015 [Full Text] e141

Ali, Ashehad A.; Medlyn, Belinda E.; Aubier, Thomas G.; Crous, Kristine Y.; Reich, Peter B. Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model. Ecology and Evolution 2015; 5(20): 4717 ? 4733 DOI: 10.1002/ece3.1733 2015 [Full Text] e141

Cardinale, Bradley J.; Venail, Patrick; Gross, Kevin; Oakley, Todd H.; Narwani, Anita; Allan, Eric; Flombaum, Pedro; Joshi, Jasmin; Reich, Peter B.; Tilman, David; van Ruijven, Jasper; Further re-analyses looking for effects of phylogenetic diversity on community biomass and stability. Functional Ecology 2015 29, 12, 1607-1610 DOI 10.1111/1365-2435.12540 2015 [Full Text] e120 e141

Cesarz, Simone; Reich, Peter B.; Scheu, Stefan; Ruess, Liliane; Schaefer, Matthias; Eisenhauer, Nico. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia, 2015, 58, 1, 23 - 32 http://dx.doi.org/10.1016/j.pedobi.2015.01.001 2015 [Full Text] e141

De Kauwe, Martin G.; Lin, Yan-Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I.Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, ?lo; Serbin, Shawn P.; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F. Yoko; Domingues, Tomas F. A test of the `one-point method` for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol., (2015) 210, 3, 1130-1144 2015 [Full Text] e141

Deng, Ye; He, Zhili; Xiong, Jinbo; Yu, Hao; Xu, Meiying; Hobbie, Sarah E.; Reich, Peter B.; Schadt, Christopher W.; Kent, Angela; Pendall, Elise; Wallenstein, Matthew; Zhou, Jizhong. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biol., 2015, 22 (2), 957-964 2015 [Full Text] e141

Feng, Zhaozhong; R?tting, Tobias; Pleijel, H?kan; Wallin, G?ran; Reich, Peter B.; Kammann, Claudia I.; Newton, Paul C.D.; Kobayashi, Kazuhiko; Luo, Yunjian; Uddling, Johan; Constraints to Nitrogen Acquisition of Terrestrial Plants under Elevated CO2; Global Change Biol., 2015, DOI: 10.1111/gcb.12938 2015 [Full Text] e141

Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E. W.; Borer, E. T.; Reich, P. B.; Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348, 6232, 336-340 DOI:10.1126/science.aaa1788 2015 [Full Text] e001 e002 e003 e012 e098 e120 e141 e245 e247 e248

Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T.Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N.; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, J?rgen; Lanta, Vojtech; Manning, Pete; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A.; Polley, H.Wayne; Reich, Peter B.; Roscher, Christiane; Seabloom, Eric W.; Smith, Melinda D.; Thakur, Madhav P.; Tilman, David; Tracy, Benjamin F.; van der Putten, Wim H.; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W.; Wilsey, Brian; Eisenhauer, Nico. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015 526, 574-577 2015 [Full Text] e120 e141

Lefcheck, J. S., J. E. K. Byrnes, F. Isbell, L. Gamfeldt, J. N. Griffin, N. Eisenhauer, M. J. S. Hensel, A. Hector, B. J. Cardinale, and J. E. Duffy. Biodiversity enhances ecosystem multifunctionality across taxa, trophic levels, and habitats. Nature Communications, 2015, 6:6936 DOI: 10.1038/ncomms7936 2015 [Full Text] e060 e120 e141

Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D., Niinemets, ?., Ordonez, A., Reich, P. B. and Santiago, L. S. (2015), Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 24: 706?717. doi: 10.1111/geb.12296 2015 [Full Text] e111 e141

Rutting, Tobias; Andresen, Louise C.; Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status, Nutr.Cycling Agroecosyst. 101, 3, 285-294 DOI 10.1007/s10705-015-9683-8 2015 [Full Text] e141

Schrodt, Franziska; Kattge, Jens; Shan, Hanhuai; Fazayeli, Farideh; Joswig, Julia; Banerjee, Arindam; Reichstein, Markus; B?nisch, Gerhard; D?az, Sandra; Dickie, John; Gillison, Andy; Karpatne, Anuj; Lavorel, Sandra; Leadley, Paul; Wirth, Christian B.; Wright, Ian J.; Wright, S.Joseph; Reich, Peter B. BHPMF - a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, DOI: 10.1111/geb.12335 2015 [Full Text] e133 e141

Smith, M. D.; La Pierre, K. J.; Collins, S. L.; Knapp, A. K.; Gross, K. L.; Barrett, J. E.; Frey, S. D.; Gough, L.; Miller, R. J.; Morris, J. T.; Rustad, L. E.; Yarie, J. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia, 2015, 177, 4, 935-947, Germany 2015 [Full Text] e120 e141

Thakur, Madhav Prakash; Milcu, Alexandru; Manning, Pete; Niklaus, Pascal A.; Roscher, Christiane; Power, Sally; Reich, Peter B.; Scheu, Stefan; Tilman, David; Ai, Fuxun; Guo, Hongyan; Ji, Rong; Pierce, Sarah; Ramirez, Nathaly Guerrero; Richter, Annabell Nicola; Steinauer, Katja; Strecker, Tanja; Vogel, Anja; Eisenhauer, Nico; Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology. 2015 21, 4076?4085 DOI: 10.1111/gcb.13011 2015 [Abstract] e141

Tu Q, Yuan M, He Z, Deng Y, Xue K, Wu L, Hobbie SE, Reich PB, Zhou J. 2015. Fungal communities respond to long-term CO2 elevation by communityreassembly. Appl Environ Microbiol 81:2445-2454. doi:10.1128/AEM.04040-14. 2015 [Full Text] e141

Venail, P., Gross, K., Oakley, T. H., Narwani, A., Allan, E., Flombaum, P., Isbell, F., Joshi, J., Reich, P. B., Tilman, D., van Ruijven, J., Cardinale, B. J. (2015), Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29: 615?626. doi: 10.1111/1365-2435.12432 2015 [Full Text] e120 e141

Verheijen, Lieneke M.; Aerts, Rien; Brovkin, Victor; Cavender-Bares, Jeannine; Cornelissen, Johannes H.C.; Kattge, Jens; van Bodegom, Peter M. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Global Change Biol., 2015; 2015, 21, 8, 3074-3086 2015 [Full Text] e111 e141

Wright, A., Schnitzer, S. A., Reich, P. B., Daily environmental conditions determine the competition?facilitation balance for plant water status. Journal of Ecology, 103: 648?656. doi: 10.1111/1365-2745.12397 2015 [Full Text] e141

Cheng L., Zhang L., Wang Y.-P., Yu Q., and Eamus D. (2014), Quantifying the effects of elevated CO2 on water budgets by combining FACE data with an ecohydrological model, Ecohydrol., 7; pages 1574?1588, doi: 10.1002/eco.1478 2014 [Full Text] e141

Cornwell, William K.; Westoby, Mark; Falster, Daniel S.; FitzJohn, Richard G.; O'Meara, Brian C.; Pennell, Matthew W.; McGlinn, Daniel J.; Eastman, Jonathan M.; Moles, Angela T.; Reich, Peter B.; Tank, David C.; Wright, Ian J.; Aarssen, Lonnie; Beaulieu, Jeremy M.; Kooyman, Robert M.; Leishman, Michelle R.; Miller, Eliot T.; Niinemets, ?lo; Oleksyn, Jacek; Ordonez, Alejandro; Royer, Dana L.; Smith, Stephen A.; Stevens, Peter F.; Warman, Laura; Wilf, Peter; Zanne, Amy E.; Austin, Amy; Functional distinctiveness of major plant lineages; Journal of Ecology, 2014, 102, 2, 345-356 2014 [Full Text] e111 e141

Flinker, Raquel Henriques. Modeling of soil moisture dynamics of grasslands in response to CO2 and biodiversity manipulations at BioCON. M.S. Thesis The University of Texas at Austin. 2014. 2014 [Full Text] e141

Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; D?az, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Ren?e M.; Cerabolini, Bruno E.L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; P?rez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan; An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants; Ecology and Evolution, 2014, 4, 14, 2799 - 2811 2014 [Full Text] e141

Gross, Kevin; Cardinale, Bradley J.; Fox, Jeremy W.; Gonzalez, Andrew; Loreau, Michel; Polley, H. Wayne; Reich, Peter B.; Ruijven, Jasper van; Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments.; Am.Nat., 2014, 183, 1, 1-12, The University of Chicago Press for The American Society of Naturalists 2014 [Full Text] e120; e141

Lau, Jennifer A.; Shaw, Ruth G.; Reich, Peter B.; Tiffin, Peter; Indirect effects drive evolutionary responses to global change; New Phytologist, 201: 335?343. doi: 10.1111/nph.12490 2014 [Full Text] e199 e141

Reich, Peter B.; Hobbie, Sarah E.; Lee, Tali D.; Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation; Nature Geoscience, 2014; 2014, 7, 12, 920-924 2014 [Full Text] e141

Tu, Qichao. Metagenomic insights into microbial community responses to long-term elevated CO2. Ph.D. Thesis, University of Oklahoma. 2014 [Full Text] e141

Weisenhorn, Pamela; 2014 Ecological and evolutionary perspectives on bacterial resource use. Ph.D. Thesis, University of Minnesota. Permanent URL http://hdl.handle.net/11299/172143 2014 e141

Wright, Alexandra; Schnitzer, Stefan A.; Reich, Peter B.; Living close to your neighbors: the importance of both competition and facilitation in plant communities; Ecology, 2014, 95, 8, 2213 - 2223 2014 [Full Text] e141

Ali, Ashehad A.; Medlyn, Belinda E.; Crous, Kristine Y.; Reich, Peter B.; A trait-based ecosystem model suggests that long-term responsiveness to rising atmospheric CO2 concentration is greater in slow-growing than fast-growing plants. Functional Ecology 2013, 27, 1011?1022; doi: 10.1111/1365-2435.12102 2013 [Full Text] e141

Cardinale, Bradley J.; Gross, Kevin; Fritschie, Keith; Flombaum, Pedro; Fox, Jeremy W.; Rixen, Christian; van Ruijven, Jasper; Reich, Peter B.; Scherer-Lorenzen, Michael; Wilsey, Brian J.; Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94:1697?1707. http://dx.doi.org/10.1890/12-1334.1 2013 [Full Text] e120 e141

Eisenhauer, N., Dobies, T.; Cesarz, S.; Hobbie, S. E.; Meyer, R. J.; Worm, K.; Reich. P. B.; 2013; Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment.; PNAS 110:6889-6894 2013 [Full Text] e141

Isbell, F.; Tilman, D.; Polasky, S.; Binder, S.; Hawthorne, P.; Low biodiversity state persists two decades after cessation of nutrient enrichment; Ecology Letters (2013) 16: 454?460 DOI: 10.1111/ele.12066 2013 [Full Text] e001 e002 e120 e141

Isbell, Forest; Reich, Peter B.; Tilman, David; Hobbie, Sarah E.; Polasky, Stephen; Binder, Seth. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America. 2013 110 (29):11911-11916. 2013 [Full Text] e001 e002. e120 e141

Mueller, K. E.; Hobbie, S. E.; Tilman, D. and Reich, P. B. (2013); Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment.; Global Change Biology, 19: 1249?1261. doi: 10.1111/gcb.12096 2013 [Full Text] e141

Reich, Peter B.; Hobbie, Sarah E.; Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass.; Nature Climate Change 2013 3:278-282 doi:10.1038/nclimate1694 2013 [Full Text] e141

Reid, Joseph Pignatello; Non-equilibrium dynamics of ecosystem processes in a changing world; 2013 ; Ph.D. dissertation; University of Minnesota Digital Conservancy Permanent URL http://hdl.handle.net/11299/159915 2013 [Full Text] e141

Templer, Pamela H. "Biogeochemistry: Limits on carbon uptake by plants." Nature Climate Change 3.3 (2013): 184-185. 2013 [Full Text] e141

Wright, A. J. (2013). The shifting importance of competition and facilitation along diversity, environmental severity, and plant ontogenetic gradients. Thesis, PhD University of Wisconsin - Milwaukee 2013 [Full Text] e141

Wright, A.; Schnitzer, S.; Dickie, I. A.; Gunderson, A. R.; Pinter, G. A.; Mangan, S. A.; Reich, P. B.; Complex facilitation and competition in a temperate grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects on oak establishment. 2013. Oecologia 171:449-458. DOI 10.1007/s00442-012-2420-y 2013 [Full Text] e141

Xu, Meiying; He, Zhili; Deng, Ye; Wu, Liyou; van Nostrand, Joy D.; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong; Elevated CO2 influences microbial carbon and nitrogen cycling; BMC Microbiology; Volume 13:124; doi:10.1186/1471-2180-13-124 2013 [Full Text] e141

Brzostek, Edward R.; Blair, John M.; Dukes, Jeffrey S.; Frey, Serita D.; Hobbie, Sarah E.; Melillo, Jerry M.; Mitchell, Robert J.; Pendall, Elise; Reich, Peter B.; Shaver, Gaius R.; Stefanski, Artur; Tjoelker, Mark G.; Finzi, Adrien C.; The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal; Global Change Biol.; 2012; 18, 8, 2617-2625 2012 [Full Text] e141

Clark,C. M., Flynn, D. F. B., Butterfield, B. J.; Reich, P. B.; (2012); Testing the Link between Functional Diversity and Ecosystem Functioning in a Minnesota Grassland Experiment.; PLoS ONE 7(12): e52821.; doi:10.1371/journal.pone.0052821 2012 [Full Text] e141

Deng, Y.; He, Z.; Xu, M.; Qin, Y.; Van Nostrand, J. D.; Wu, L.; Roe, B. A.; Wiley, G.; Hobbie, S. E.; Reich, P. B.; Zhou, J.; Elevated carbon dioxide alters the structure of soil microbial communities.; Appl Environ Microbiol. 78(8):2991-2995. 2012 [Full Text] e141

Eisenhauer, Nico; Cesarz, Simone; Koller, Robert; Worm, Kally; Reich, Peter B.; Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology. 18:435?447, doi: 10.1111/j.1365-2486.2011.02555.x 2012 e141

Reid, J. P.; Adair, E. C.; Hobbie, S. E.; Reich, P. B.; Biodiversity, nitrogen deposition and CO2 affect grassland soil carbon cycling but not storage. 2012. Ecosystems 15(4):580-590. 2012 [Full Text] e141

Tilman, D.; Reich, P. B.; Isbell, F.; Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory; Proceedings of the National Academy of Sciences; 2012; 109, 26, 10394-10397 2012 [Full Text] e001 e002 e003 e004 e012 e062 e098 e120 e141 e172