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Abstract. The importance of litter decomposition to carbon and nutrient cycling has
motivated substantial research. Commonly, researchers fit a single-pool negative exponential
model to data to estimate a decomposition rate (k). We review recent decomposition research,
use data simulations, and analyze real data to show that this practice has several potential
pitfalls. Specifically, two common decisions regarding model form (how to model initial mass)
and data transformation (log-transformed vs. untransformed data) can lead to erroneous
estimates of k. Allowing initial mass to differ from its true, measured value resulted in
substantial over- or underestimation of k. Log-transforming data to estimate k using linear
regression led to inaccurate estimates unless errors were lognormally distributed, while
nonlinear regression of untransformed data accurately estimated k regardless of error
structure. Therefore, we recommend fixing initial mass at the measured value and estimating k
with nonlinear regression (untransformed data) unless errors are demonstrably lognormal. If
data are log-transformed for linear regression, zero values should be treated as missing data;
replacing zero values with an arbitrarily small value yielded poor k estimates. These
recommendations will lead to more accurate k estimates and allow cross-study comparison of
k values, increasing understanding of this important ecosystem process.
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INTRODUCTION

The fundamental importance of litter decomposition

to global carbon and nutrient cycles has inspired the

development of various mathematical models that

describe and predict patterns of litter mass loss. Of

these, the single-pool model is most commonly used

(Olson 1963):

MðtÞ ¼ Mð0Þe�kt þ e ð1Þ

where M(t) is mass remaining at time t, M(0) is initial

mass, k is the single rate at which all litter constituents

are assumed to decompose, and e is random error

assumed to be normal with mean ¼ 0 and standard

deviation, SD. This model is often fit to data using the

method of least squares (LS), which minimizes Q, the

mean square error:

Q ¼ 1

N

X

i

wi½MðtiÞ �MðtiÞprdc�
2 ð2Þ

where N is the number of data points, predicted mass,

Mprdc, is calculated using Eq. 1, and weights, wi, may be

set equal to 1 or to estimates of each measurement’s

precision (Hobbie and Roth 2007). Because this method

requires nonlinear LS, investigators often log-transform

the data and Eq. 1 in order to use linear LS programs.

However, because e in Eq. 1 is additive, there is no

arithmetic process that can transform Eq. 1 into a linear

form; researchers must therefore assume that e is

multiplicative to use linear LS (Talpaz et al. 1981, Smith

1993, Packard and Boardman 2009):

MðtÞ ¼ Mð0Þe�kt 3 ee: ð3Þ

Unlike Eq. 1, Eq. 3 may be log-transformed for linear

LS programs as

ln½MðtÞ� ¼ ln½Mð0Þ� � kt þ e ð4Þ

with mean square error

Q ¼ 1

N

X

i

wi ln½MðtiÞ� � ln½MðtiÞprdc�
n o2

: ð5Þ

Workers in other fields have noted that linearizing similar

equations does not provide the same parameter estimates

as their nonlinear counterparts (Talpaz et al. 1981, Bailer

and Portier 1990, Smith 1993, Packard and Boardman

2009), but in decomposition research this remains an

under-recognized consequence of substituting Eq. 4 for

Eq. 1 (particularly if all wi¼1). Here, we (1) briefly review

the assumptions underlying the use of transformed (linear

LS) vs. untransformed (nonlinear LS) data, (2) present a
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literature review summarizing the manner in which model

fitting and data transformation are currently handled in

decomposition studies, and (3) use simulated and real

data to demonstrate how data transformation and

regression choice affect estimates of k.

The repercussions of log-transforming data

for linear regression

One may intuitively expect estimates of k from

nonlinear LS and Eq. 1 and linear LS and Eq. 4 to be

interchangeable, but the estimates are often quite

different, because using untransformed data (nonlinear

LS) and log-transformed data (linear LS) imply different

error structures and weights (wi; Talpaz et al. 1981,

Bailer and Portier 1990, Packard and Boardman 2009).

Constant wi’s (all wi ¼ 1) in Eq. 2 imply constant

variance across data points and all points have equal

influence estimating k (additive error; Fig. 1a). If data

with constant variance are log-transformed for linear LS

(all wi ¼ 1), variance is nonconstant and estimates of k

are influenced more by small than by large values (Fig.

1b). Constant variance for log-transformed data (Fig.

1d) indicates constant fractional variance for the raw

data (multiplicative error; Fig. 1c). This is what is

implied by log-transforming data and using linear LS

(all wi¼ 1). If data with constant fractional variance are

untransformed for nonlinear LS, variance is (less

severely) nonconstant and estimates of k are influenced

slightly more by large than by small values (Fig. 1c).

Thus, choosing an inappropriate data transformation

and LS method may produce erroneous estimates of k.

Data with nonconstant variance may also be fit using

weighted LS regression, which attempts to give each

data point the proper amount of influence over

parameter estimates by weighting each measurement

according to its precision (NIST 2008). However,

estimating wi’s with small numbers of replicates (e.g.,

,10) can produce poor results (Carroll and Ruppert

1988, NIST 2008). For example, without sufficient

replication, the common procedure for estimating wi’s,

wi ¼ 1/replicate variance, yields extremely variable

weights and results that do not properly control the

influence of measurements on parameter estimates

(Carroll and Ruppert 1988, NIST 2008). Decomposition

data typically have few replicates, so this method likely

yields inappropriate wi’s. We therefore suggest using this

method only when replicate numbers are fairly large, so

FIG. 1. Simulated data of proportional mass remaining, X(t), with mean decomposition rate, k,¼ 0.5. Error bars in panels (a)
and (b) show constant error [X(t) 6 0.09]. Error in panels (c) and (d) is constant fractional [lognormal; X(t)3 exp(60.09)]. Data in
panels (a) and (c) are untransformed; data in panels (b) and (d) are log-transformed. The decomposition rate, k, is used in Eq. 7
[X(t) ¼ 1e�kt], to generate data for the proportional mass remaining (e.g., for leaf litter mass decomposing over time). To these
values, constant or constant fractional error was added as shown. Mass declines over time as it is decomposed.
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that wi’s may be estimated precisely (Carroll and

Ruppert 1988, NIST 2008).

An additional consequence of fitting log-transformed

data using Eq. 4 (linear LS) is that the de-transformed

equation will provide biased mass-remaining predictions

(de-transformed predictions will also be biased; Jansson

1985, Smith 1993, Packard 2009). In the log scale, Eq. 4

predicts the arithmetic means of the mass remaining at

each time point; de-transforming Eq. 4 into Eq. 3 instead

predicts the geometric means, which are biased under-

predictions of the arithmetic means (Packard 2009,

Packard and Boardman 2009). Such de-transformations

are not common practice in decomposition studies, but

using estimates of k from linearized models in nonlinear

models (e.g., in predictive decomposition or ecosystem

models) will provide biased mass-remaining values.

The proportional mass remaining at time zero

is one by definition

Fitting single-pool models also requires deciding how

to model M(0). Commonly, M(t) is normalized by M(0)

to calculate the proportional mass remaining, X(t):

XðtÞ ¼ MðtÞ
Mð0Þ : ð6Þ

In this case, proportional initial mass, X(0)¼M(0)/M(0).

Thus, X(0) equals 1 by definition, and Eq. 1, written in

terms of the proportional mass remaining, becomes

XðtÞ ¼ 1e�kt: ð7Þ

Similarly, Eq. 4 becomes

ln½XðtÞ� ¼ ln½1� � kt ¼ 0� kt: ð8Þ

Because X(0) ¼ 1 by definition, neither X(0) nor ln[X(0)]

should be estimated as model parameters. Instead, X(0)

should be set equal to one in the model equation (as in

Eqs. 7 and 8). Many linear regression procedures in

statistical programs automatically estimate a y-intercept

unless otherwise instructed, so caution must be used to

prevent such procedures from implicitly allowing an X(0)

that is greater or less than one and therefore biologically

unreasonable.

METHODS

Decomposition literature review

To determine how researchers currently deal with

data transformation and model-fitting issues, we

searched the ISI Web of Science for articles published

from January 2002 to February 2008 that had the terms

litter, decomposition, and rate(s) in the abstract, key

words, or key words plus. Of the 1538 articles found by

this search, 498 were fine-root or leaf litterbag studies

available from the University of Minnesota’s electronic

journal collection. For the studies that fit a single-pool

model to their data (the majority; see Results), we used

the following rules to determine which method, log-

transformed (LT) with linear LS or untransformed (UT)

with nonlinear LS, was used:

1) If, despite presentation of a nonlinear (N) equation

in the methods, results indicated that the linear (L)

model was used on LT data, we counted the model as

‘‘L-LT.’’ When the linear model was given in the

methods, we never found that nonlinear regression on

untransformed data was used instead. Thus, such studies

were recorded as ‘‘L-LT.’’

2) If a nonlinear model was given in the methods, but

it was not made clear that nonlinear LS was used on the

UT data, we counted it as an ‘‘assumed N-UT.’’

3) Studies that explicitly stated nonlinear regression

was used or reported parameter values within a

nonlinear equation in the figures, tables, or results were

recorded as ‘‘N-UT.’’

4) If no information about the model or data

transformation used was given (e.g., ‘‘breakdown rates

were computed using an exponential decay model’’), we

recorded it as ‘‘unknown.’’

We used the following rules to categorize how the

initial value, M(0), was modeled:

1) Studies were recorded as ‘‘M(0) unknown’’ if it was

not explicitly stated whether M(0) was estimated and

either (a) the equation given in the methods included a

parameter for M(0) or (b) no equation was given in the

methods. Because linear LS programs often estimate an

intercept by default, using this rule likely underestimates

the ‘‘M(0) estimated’’ (rule 2, below).

2) If the given equation did not have an explicit

parameter forM(0), we assumed that the value was fixed

at one (e.g., if X(t) ¼ e�kt, then X(0) ¼ 1). These cases

were recorded as ‘‘assumed fixed M(0).’’ However,

‘‘assumed fixed M(0)’’ cases were changed to ‘‘M(0)

estimated’’ when figures or tables presented in the results

clearly indicated that M(0) was estimated.

3) If authors stated that initial mass was fixed at a

certain value, we counted it as ‘‘fixed M(0).’’

4) If authors stated that they estimated M(0), it was

recorded as ‘‘M(0) estimated.’’

In addition to the above information, we recorded (1)

study length, (2) what decomposition model(s) were fit,

and (3) how models were compared or selected if more

than one model was fit. The 498 reviewed litterbag

studies are listed in Appendix A.

Data simulations for single-pool k estimation

We used four data simulation runs to investigate the

consequences of estimating single-pool k using trans-

formed data (linear LS) and untransformed data

(nonlinear LS) methods. Each run increased the length

of the simulation from 200, to 400, to 600, to 1500 days

using the following time series: 30, 60, 100, 150, 200, 250,

300, 350, 400, 500, 600, 700, 1000, 1500 days (4.1 years).

Increasing the length of a run concurrently decreased the

mass remaining at the end of the run (Fig. 2). Log-

transforming normal data gives small values more

influence on parameter estimates than large values, so
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varying time series length allowed us to investigate how

small mass-remaining values affected the ability of each

transformation and regression technique to accurately

estimate k.

In each simulation run we used the true proportional

mass remaining at each time point, calculated using Eq.

7 and k ¼ 0.004 d�1, to create three data sets with

different error structures: normal, lognormal, and

truncated normal. We expected that k would be

accurately estimated by unweighted nonlinear LS of

untransformed data if the data had normal, constant

errors or by unweighted linear LS of log-transformed

data if data had lognormal, constant fractional error.

Normal errors were generated using a normal distribu-

tion (mean ¼ 0, SD ¼ 0.2, a typical SD for mass-

remaining data; Harmon 2007, Hobbie 2008) and added

to each true mass-remaining value. Because negative

mass-remaining values are biologically unrealistic, gen-

erated negative values were set¼ 0. Within a given time

series, only the negative values were set ¼ 0 (i.e., the

occurrence of a zero value did not force all remaining

values to be set¼ 0). To estimate k with linear LS, zero

values were set ¼ 0.00001 and data were log-trans-

formed. We compared results from these simulations

with those from runs treating zero values as missing

data. We generated lognormal error by multiplying true

mass-remaining values by exp(normal error).

While errors are often assumed to be lognormal or

normal, we found that errors in two decomposition data

sets were instead small for high (near 1) and low (near 0)

proportional mass-remaining values and large for mid-

range mass-remaining values (Appendix B; Harmon

2007, Hobbie 2008). To determine how well each data

transformation and LS method estimated k for such

data, we generated data with ‘‘truncated normal errors’’

by adding normal error to true mass-remaining values,

setting negative values ¼ 0 and setting values greater

than 1.05 ¼ 1. This generated errors similar to those

found in the real data sets we examined (Appendix B).

Each simulation run estimated k for 10 000 normal,

truncated normal, and lognormal data sets using

nonlinear LS (untransformed data) and linear LS (log-

transformed data). We estimated k for the mean of three

replicates per time point. We reran the simulations using

one replicate, but results were nearly identical and are

not presented. To determine how well each regression

and data transformation method estimated k, we

calculated the mean, standard error (SE), bias,

%Bias ¼
X

i

½ðestimated ki � true kÞ=true k�=10 000 3 100

ð9Þ

and relative error (RE),

%RE ¼
X

i

½absðestimated ki � true kÞ=true k�=10 000 3 100

ð10Þ

for the k estimates from each simulation, where i¼ 1 to

FIG. 2. Proportional mass remaining, X(t), predicted by mean decomposition rate, k, estimates from nonlinear (NLIN;
untransformed data) and linear regression (LIN; log-transformed data) from (a–c) 200-day and (d–f ) 1500-day simulations. Errors
are normal (a and d), truncated normal (b and e), or lognormal (c and f ). Proportional initial mass, X(0)¼ 1 for all simulations.
‘‘Truth’’ is the proportional mass remaining, calculated using Eq. 7 with k¼ 0.004 d�1, prior to the addition of normal, lognormal,
and/or truncated error.

E. CAROL ADAIR ET AL.1228 Ecology, Vol. 91, No. 4



10 000 k estimates per fitting method per simulation

(abs, absolute value). Bias provided a measure of each

method’s over- or underestimation of true k, while RE

provided a measure of the magnitude of the difference

between true k and each k estimate.

To investigate the consequences of estimating pro-

portional initial mass, X(0), vs. fixing it at the true value,

X(0) ¼ 1, we repeated the simulations, estimating k and

X(0) for each data set using both data transformation

and regression methods. For log-transformation, zero

values were treated as missing data. We calculated the

mean, SE, bias, and RE for all k and X(0) estimates.

Finally, because work with similar equations suggests

that (1) the amount of error in the data strongly

influences the ability of nonlinear regression to accu-

rately estimate parameters (Bottcher 2004) and (2) the

difference between linear and nonlinear parameter

estimates will increase with increasing error (Jansson

1985, Packard and Boardman 2009), we repeated the

simulation runs with less (SD¼ 0.004) and more (SD¼
0.33) error than in the original simulations. All

simulations and statistical analyses were performed in

R version 2.8.1 (R Development Core Team 2008).

Real data analysis

Our real data contained data from Hobbie (2008) plus

S. E. Hobbie’s unpublished filter paper mass loss data

from the same experiment (hereafter, the Hobbie [2008]

data set). The Hobbie (2008) experiment was established

at Cedar Creek Ecosystem Science Reserve in central

Minnesota, USA (458240000 N, 93.28120000 W). Eight

litters were decomposed for five years at eight sites (two

old fields, a hardwood forest, two oak stands, two pine

stands, and an aspen stand), with a nitrogen addition

treatment at each site (n ¼ 6). Details are presented in

Hobbie (2005, 2008). Zero values were treated as missing

data for log transformation (see Results). Using

nonlinear (untransformed data) and linear (log-trans-

formed data) LS, we estimated k with X(0)¼ 1 and while

estimating X(0).

We also investigated the ability of weighted nonlin-

ear LS (untransformed data) to accurately estimate k.

In the simulations, we used wi¼ 1/variance of the three

replicates (Eq. 2), estimating k using (1) the mean mass
remaining of the three replicates per time point and (2)

only one replicate. In the Hobbie (2008) data we used

1/variance of all six replicates, but estimated k
separately for each replicate. This method performed

well in the simulations for which variance was relatively

constant, but performed poorly in the real data, often
producing extremely variable wi’s, unrealistic k values,

and predictions that fit the data very poorly (data not

shown). Examination of the data and wi’s revealed
that the data had too few replicates to calculate

accurate wi estimates. We therefore do not present

these results.
As a resource for decomposition researchers, we have

provided a simplified version of the R code we used to

estimate k using untransformed data and nonlinear
regression (see Supplement).

RESULTS

Literature review

Of 498 litterbag studies, 343 fit a model to their data
(Table 1). The single-pool model was most commonly

used, but linear, double-pool, and asymptotic or limit

value models were also used (Table 1; Weider and Lang
1982, Berg and Ekbohm 1991). Infrequently used were

Ågren and Bosatta’s (1996) Q model, quadratic models

(Wieder and Lang 1982), Godshalk and Wetzel’s (1978)
single-pool decaying decomposition rate model, and

models predicting mass loss as a function of litter
chemistry and/or climate (e.g., Liski et al. 2003). Few

studies fit more than one model to data and often no

information was given about what models were com-

TABLE 1. Results of the literature search: models used in
litterbag studies from January 2002 to February 2008.

Model type Total
Percentage
of total

Linear 22 4.42
Single 319 64.06
Asymptotic 5 1.00
Double 20 4.02
Other 21 4.22
Model comparisons (explicit) 35 (26) 7.01 (5.21)
No model fit 155 31.12

Total 498

Notes: Percentage values are percentage of total litterbag
studies (out of 498 studies). ‘‘Explicit’’ model comparisons
described and statistically compared all the models that were fit
to the data.

TABLE 2. Results of the literature search: how the single-pool
negative exponential model is used to estimate litter
decomposition rates (k) and/or initial mass (M(0)).

Method
No.

studies
Percentage
of total

Litterbag studies

Total 498
Calculated single-pool k 319

Initial mass, M(0)

M(0) unknown 183 57.37
Fixed M(0) at 100% or initial mass 30 9.40
Assumed fixed M(0) 70 21.94
M(0) estimated using data� 37 (26) 11.59 (70.03)

Data transformation and regression

Unknown 61 19.12
N-UT 48 15.05
Assumed N-UT 87 27.27
L-LT 126 39.50

Notes: Percentage values are percentages of total litterbag
studies that estimated k using the single-pool model (319
studies). Abbreviations are: N-UT, authors explicitly stated
that they used nonlinear regression on untransformed data;
Assumed N-UT, studies in which it was not explicitly stated,
but only implied that the authors used nonlinear, untrans-
formed data (see Methods); L-LT, linear regression on log-
transformed data.

� M(0) range reported.
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pared or how (Table 1). Detailed model comparisons

used R2, statistical significance, or mean square error as

model selection criteria. When models were not fit, data

were usually analyzed with repeated-measures ANOVA

or ANOVAs or t tests on data at one to many time

point(s).

When fitting the single-pool model, all methods and

model forms were used, but the amount of method detail

provided varied widely. The largest fraction of studies

estimated k using log-transformed data and linear LS

(40%; Table 2). Only 15% of studies explicitly stated that

they used nonlinear LS on untransformed data to

estimate k (Table 2). For the remaining 45%, we either

had to assume a method or it was unknown. Most often,

it was also unclear whether or not initial mass was

estimated (57%; Table 2). Often, we assumed that initial

mass was fixed (based on the equation provided in the

methods), although no explicit information about initial

mass estimation was given (22%; Table 2). In rare cases,

it was explicitly stated that initial mass was fixed (9%) or

TABLE 4. Results from simulation runs investigating the effect of choosing an arbitrary replacement value for zero values on
estimating the single-pool decomposition rate, k, using linear regression on log-transformed data with normal and truncated
normal errors (true k¼ 0.004 d�1; X(0)¼ 1).

Zero
replacement

value

Normal errors Truncated normal errors

Bias
(%)

Relative
error (%)

Decomposition, k
Bias
(%)

Relative
error (%)

Decomposition, k

Mean SE Mean SE

0.01 �17 17 0.00331 3.73 3 10�6 �17 17 0.00332 3.71 3 10�6

0.00001 28 31 0.00514 9.04 3 10�6 29 31 0.00516 9.10 3 10�6

0.0000001 97 97 0.00788 1.75 3 10�5 97 97 0.00787 1.75 3 10�5

Notes: All simulation runs were 1500 d. Mean k and SE are for the 10 000 k estimates within one run.

TABLE 3. Results from simulation runs investigating the ability of each data transformation and
regression technique combination to accurately estimate the single-pool decomposition rate, k,
with proportional initial mass, X(0) ¼ 1, and non-positive mass-remaining values treated as
missing data (log-transformed normal and truncated normal data only).

Measurement, by
simulation period

Normal errors
Truncated

normal errors Lognormal errors

Nonlinear Linear Nonlinear Linear Nonlinear Linear

200 days

Bias (%) 1 14 3 14 �4 0
Relative error (%) 15 22 15 22 10 8
Mean k 0.00405 0.00456 0.00412 0.00457 0.00385 0.00400
0.00001 mean k NA 0.00490 NA 0.00492 NA NA
Mean MR 0.450 0.402 0.452 0.404 0.459 0.450

400 days

Bias (%) �1 8 0 8 �3 0
Relative error (%) 10 15 10 15 5 3
Mean k 0.00397 0.00433 0.00400 0.00432 0.00390 0.00400
0.00001 mean k NA 0.00631 NA 0.00629 NA NA
Mean MR 0.218 0.193 0.218 0.195 0.206 0.202

600 days

Bias (%) �3 �3 �2 �3 �2 0
Relative error (%) 9 13 9 13 4 2
Mean k 0.00390 0.00386 0.00394 0.00386 0.00391 0.00400
0.00001 mean k NA 0.00684 NA 0.00686 NA NA
Mean MR 0.133 0.138 0.133 0.138 0.093 0.091

1500 days

Bias (%) �4 �40 �3 �40 �2 0
Relative error (%) 9 40 9 40 4 1
Mean k 0.00385 0.00242 0.00388 0.00242 0.00391 0.00400
0.00001 mean k NA 0.00514 NA 0.00516 NA NA
Mean MR 0.082 0.107 0.081 0.106 0.003 0.002

Notes: Estimated k values are from simulations using three replicates per time point (true k ¼
0.004 d�1). Each simulation run generated 10 000 data sets with normal (constant), truncated
normal (constant), and lognormal (constant fractional) errors, which were used to estimate k using
linear regression of log-transformed data and nonlinear regression of untransformed data. Mean k
standard errors were all �0.00001. Mean MR is the proportional mass remaining at the end of the
simulation; ‘‘0.00001 mean k’’ is the mean k from simulations in which non-positive mass-remaining
values were replaced by 0.00001. ‘‘NA’’ indicates not applicable.
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TABLE 5. Results from simulation runs investigating the ability of each transformation and
regression technique to accurately estimate the single-pool decomposition rate, k, when
proportional initial mass, X(0), was also estimated as a model parameter (i.e., X(0) was not fixed
at 1).

Measurement, by
simulation period

Normal errors
Truncated

normal errors Lognormal errors

Nonlinear Linear Nonlinear Linear Nonlinear Linear

200 days

Bias (k) (%) 1 13 �5 8 0 0
Relative error (k) (%) 28 37 26 36 18 17
Mean k 0.00404 0.00451 0.00378 0.00434 0.00401 0.00399
Mean X(0) 1.01 1.01 0.97 0.98 1.02 1.00

400 days

Bias (k) (%) �2 3 �5 2 0 0
Relative error (k) (%) 15 22 15 22 9 6
Mean k 0.00394 0.00414 0.00381 0.00409 0.00401 0.00400
Mean X(0) 1.00 0.97 0.97 0.95 1.02 1.00

600 days

Bias (k) (%) �4 �15 �7 �15 0 0
Relative error (k) (%) 14 24 14 24 7 4
Mean k 0.00383 0.00341 0.00372 0.00340 0.00402 0.00400
Mean X(0) 0.99 0.86 0.96 0.85 1.02 1.00

1500 days

Bias (k) (%) �7 �60 �10 �60 0 0
Relative error (k) (%) 15 60 15 60 7 2
Mean k 0.00372 0.00161 0.00360 0.00159 0.00401 0.00400
Mean X(0) 0.98 0.55 0.95 0.54 1.02 1.00

Notes: Each simulation run generated 10 000 data sets with normal, truncated normal, and
lognormal errors. These data sets were used to estimate k and X(0) using linear regression on the
log-transformed data and nonlinear regression on the untransformed data. The mean of three
replicates per time point (true k¼ 0.004 d�1) was used to estimate k and X(0). Mean k SEs were all
�0.00002. Mean X(0) SEs were all �0.002.

FIG. 3. Decomposition rate, k, vs. proportional initial mass estimates, X(0), from nonlinear regression of untransformed data
with (a) normal, (b) truncated normal, and (c) lognormal errors, and from linear regression of log-transformed data with (d)
normal, (e) truncated normal, and (f ) lognormal errors. Results are from the 600-day simulation but were similar for all
simulations.
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estimated (12%; Table 2). In the latter case, 70% of

studies reported the estimates.

Data simulations

Nonlinear regression of untransformed data accurate-

ly estimated k for data with all error types while linear

regression of log-transformed data only consistently

estimated k accurately for data with lognormal errors

(Fig. 2, Table 3). Replacing zero mass-remaining values

with an arbitrarily small replacement value (RV) to

allow log transformation and linear regression of

normal data (a common practice) greatly influenced k

estimates (Tables 3 and 4). Using an RV that is very

different from measured values (e.g., 0.00001 vs. 0.002 at

t ¼ 1500) likely creates influential outliers (Cook and

Weisberg 1999). The influence of these points is further

amplified because log-transforming normal data causes

small values to have more influence than large values

(Fig. 1b; this was not a problem for generated lognormal

data, which only contained values . 0). Thus, if the RV

was small compared to mass-remaining values at the

same time point (e.g., 0.0000001 vs. 0.002), dispropor-

tionate weighting of the RV resulted in an overestimate

of k (Table 4; Appendix C). If the RV was large

compared to mass-remaining values at the same time

point (e.g., 0.01 vs. 0.002), k was underestimated (Table

4; Appendix C). Results were nearly identical for data

with truncated errors (Table 4). Treating zero values as

missing data resulted in more accurate linear k estimates

(Table 3). Thus, we report results from simulations

treating zero values as missing data.

For data with normal and truncated normal errors,

estimating X(0) and k as model parameters yielded less

accurate estimates of k than did fixing X(0) ¼ 1 in the

equation (i.e., using Eqs. 7 or 8) and estimating k: across

fitting methods, relative error (RE) and bias were either

similar or greater when X(0) was estimated than when it

was fixed (Tables 3 and 5). Mean X(0) for data with

normal and truncated normal errors ranged from 0.54 to

1.01 (Table 5). In contrast, mean X(0) for data with

lognormal errors ranged from 1.00 to 1.02 (Table 5).

However, across all simulations and fitting methods, the

mean range of k values was nearly two times greater

when X(0) and k were estimated (0.0077 d�1) than when

only k was estimated (0.0043 d�1), and estimates of k

increased with X(0) estimates (Fig. 3). Because estimat-

ing X(0) did not yield accurate estimates of k, we focus

on simulations that fixed X(0)¼ 1 and only estimated k.

With X(0)¼ 1, nonlinear regression of untransformed

data with normal and truncated normal errors accu-

rately estimated k in all simulations, at worst underes-

timating k by 4% (Fig. 2, Table 3). Log-transforming

TABLE 6. Results from simulation runs investigating the effect of changing the standard deviation (SD) of simulated data on
single-pool decomposition rate estimates, k, with fixed and estimated proportional initial mass, X(0).

Simulation
period (d) SD

Bias
or RE

X(0) fixed at 1

Normal
errors

Lognormal
errors

Truncated
normal errors

Nonlinear Linear Nonlinear Linear Nonlinear Linear

200 0.33 Bias (%) 0 21 �10 0 10 24
RE (%) 24 35 17 14 25 36

0.2 Bias (%) 1 14 �4 0 3 14
RE (%) 15 22 10 8 15 22

0.07 Bias (%) 0 2 0 0 0 1
RE (%) 5 6 3 3 5 6

400 0.33 Bias (%) �5 �2 �7 0 �1 �1
RE (%) 15 18 9 5 15 18

0.2 Bias (%) �1 8 �3 0 0 8
RE (%) 10 15 5 3 10 15

0.07 Bias (%) 0 3 0 0 0 3
RE (%) 3 5 2 1 4 6

600 0.33 Bias (%) �8 �16 �6 0 �5 �17
RE (%) 15 21 8 4 14 21

0.2 Bias (%) �3 �3 �2 0 �2 �3
RE (%) 9 13 4 2 9 13

0.07 Bias (%) 0 5 0 0 0 4
RE (%) 3 8 1 1 3 7

1500 0.33 Bias (%) �11 �51 �6 0 �8 �51
RE (%) 17 51 8 2 15 51

0.2 Bias (%) �4 �40 �2 0 �3 �40
RE (%) 9 40 4 1 9 40

0.07 Bias (%) 0 �22 0 0 0 �22
RE (%) 3 23 1 0 3 23

Notes: The SD was either smaller (0.067) or larger (0.33) than in the initial simulations (0.2). Bias and relative error (RE) for the
estimates of k are shown. Each simulation run generated 10 000 data sets with normal, truncated normal, and lognormal errors,
which were used to estimate k or k and X(0) using linear regression on the log-transformed data and nonlinear regression on the
untransformed data. The mean of three replicates per time point (true k¼ 0.004 d�1) was used to estimate the model parameters.
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data with normal or truncated normal errors for linear

LS yielded the least accurate estimates of k, overesti-

mating k by 14% in short simulations and underesti-

mating k by 3–40% in long simulations, due to the large

influence of small values (Fig. 2, Table 3). In short

simulations, overestimates of k and the corresponding

underestimates of mass remaining were likely the result

of (1) small values at the end of the time series

increasing estimates of k and (2) the underestimation

bias introduced by de-transforming the equation that

was fit to log-transformed data (Jansson 1985). As

simulation length increased and mass remaining de-

creased, more zero values were generated and treated as

missing, leaving only relatively large small values

(compared to the true mass remaining). The large

influence of these values (due to log-transforming data

with normal errors) forced linear regression to increas-

ingly underestimate k as simulation length increased, an

effect that was amplified by increasing the data SD

(Table 6) and that increased with time series length for a

given true k (Appendix D). Linear regression of log-

transformed data with lognormal errors and nonlinear

regression of the same untransformed data produced

accurate estimates of k (Fig. 2, Table 3). Thus, data

transformation and regression method choice was much

less important for data with lognormal (constant

fractional) errors.

Regardless of whether or not X(0) was estimated,

increasing the SD of simulated data always increased RE

and either had no effect on or increased the bias of

estimates of k (Table 6). Similarly, decreasing the SD

decreased RE and either had little effect on or decreased

the bias of estimates of k (Table 6). For data with normal

and truncated normal errors, increasing the SD had a

smaller effect on estimates of k if nonlinear regression

(untransformed data), rather than linear regression (log-

transformed data), was used (Table 6). The opposite was

true for data with lognormal errors, but RE and bias

remained relatively low (Table 6). As expected, increas-

ing the SD increased the difference between linear and

nonlinear estimates of k (Appendix E).

Real data

Estimating X(0) and k for the Hobbie (2008) data

resulted in dramatic over- and underestimates of X(0)

(Fig. 4). For nonlinear regression of untransformed

data, X(0) ranged between 0.49 and 1.8, and for linear

regression of log-transformed data, X(0) ranged between

0.35 and 4.06. Given these misestimates and our

simulation results, we focus on the results of the fixed

X(0) analyses.

Using untransformed (nonlinear LS) and log-trans-

formed (linear LS) data resulted in very different k

estimates (Fig. 5). Linear and nonlinear k estimates

corresponded well for slowly decomposing litters with

low k’s, but for rapidly decomposing litters, linear k’s

were much higher than nonlinear k’s (Fig. 5). In

general, for substrates with the smallest amount of

mass remaining at the end of the experiment (less than

approximately 10%), linear k values were substantially

larger than nonlinear k values (Fig. 5b). For example,

on average, filter paper had the least amount of mass

remaining at the end of the experiment and, on average,

the linear k estimate was more than 1.5 times greater

than the nonlinear k estimate (Appendix F). These

results are consistent with our data simulations, which

found linear LS to overestimate k when data with

constant normal errors had small values at the end of

the time series. Conversely, linear LS estimated slightly

smaller k’s than nonlinear LS for the three next fastest

decomposing species, which had nearly twice the

amount of mass remaining at the end of the experiment

as the fastest decomposing substrate (Appendix F). Our

simulation runs generated such results only in long

simulations where zero values were treated as missing

data, so that the remaining, larger-than-average values

had more influence than large values early in the time

series (e.g., Fig. 2d). Similarly, in the Hobbie (2008)

data, linear k’s were smaller than nonlinear k’s when

the last one or two values were greater than earlier

values.

DISCUSSION AND CONCLUSIONS

Our results suggest several ways to avoid the

substantial potential pitfalls that surround fitting

single-pool k values. First, we assert that it is biologi-

cally appropriate to define initial mass as the true,

TABLE 6. Extended.

X(0) estimated

Normal
errors

Lognormal
errors

Truncated
normal errors

Nonlinear Linear Nonlinear Linear Nonlinear Linear

0 5 1 �1 �14 �5
46 59 31 28 42 57
1 13 0 0 �5 8
28 37 18 17 26 36
0 1 0 0 0 1
10 11 6 6 10 11

�8 �19 1 0 �17 �23
24 34 15 11 25 36
�2 3 0 0 �5 2
15 22 9 6 15 22
0 4 0 0 0 4
5 9 3 2 5 9

�14 �37 1 0 �21 �40
24 41 12 7 26 43
�4 �15 0 0 �7 �15
14 24 7 4 14 24
0 6 0 0 0 6
5 12 3 1 5 12

�19 �72 1 0 �27 �73
27 73 12 3 30 73
�7 �60 0 0 �10 �60
15 60 7 2 15 60
�1 �36 0 0 �1 �36
5 37 2 1 5 37
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measured initial mass. While estimating initial mass

[expressed either as proportional initial mass, X(0), or as

the measured, non-normalized initial mass, M(0)] and k

as model parameters may produce apparently better fits

to the data, it produces incorrect initial mass and k

values (Fig. 4). In our simulations, over- or underesti-

mates of X(0) led to unrealistically high or low k values

(Fig. 3) that are not comparable to k values from studies

that do not estimate X(0). Similarly, although we did not

address it directly in our simulations, estimating initial

mass in the original, measured units, M(0), would lead

to the same problems. Therefore, we suggest that if

mass-remaining data are expressed proportionally as

X(t), X(0) should be set equal to 1 in the model equation

(e.g., Eq. 7). If data are modeled in the original units as

M(t), M(0) in the model equation should equal

FIG. 4. Single-pool models fit to data of proportional mass remaining, X(t), with proportional initial mass, X(0), estimated or
fixed at 1. When X(0) is estimated, X(0) and decomposition rate, k, can be greatly over- or underestimated by (a, b) linear regression
of log-transformed data and (c, d) nonlinear regression of untransformed data. Data are two litter types from Hobbie (2008). RSS
is the residual sum of squares.

FIG. 5. (a) Linear regression (log-transformed data) of decomposition rate, k, vs. nonlinear (untransformed data) k estimates
from the Hobbie (2008) data set and (b) the difference between k estimates from nonlinear and linear regression (nonlinear k –
linear k) vs. the proportional mass remaining at the end of the experiment (five years). The line in panel (a) is a 1:1 line.
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measured initial masses. Alternatively, the relatively

small amount of measurement error associated with

initial masses may be accounted for by constraining

initial mass estimates to biologically realistic values.

Poor single-pool model fits may be revealed by drastic

over- or underestimates of initial mass, low R2 values if

initial mass is fixed, or visual examination and may

indicate that other models would more accurately

describe mass loss (Harmon et al. 2009). In our real

data, when estimated X(0) is ,80% of X(0), 57% of these

cases were better fit by an asymptotic or double-pool

model; 31% were fit equally well by the single-pool,

double-pool, and/or asymptotic model (Appendix G). In

contrast, these models did not better fit data where X(0)

was overestimated.

Second, in agreement with work on the linearization

of similar equations via log transformation (e.g., power

law equations; Smith et al. 1980, Talpaz et al. 1981,

Benedetti and Sebastiani 1996, Packard and Boardman

2009), we assert that nonlinear regression of untrans-

formed decomposition data will nearly always result in

more accurate k estimates than linear regression of log-

transformed data, because of issues related to data error

structure, bias in the de-transformed log scale predic-

tions, and problems associated with the treatment of

zero values when log-transforming data for linear

regression. When data were untransformed, nonlinear

regression accurately estimated k for data with all error

structures. When data were log-transformed, linear

regression estimated k accurately when errors were

lognormal (a constant fraction of mass remaining), but

when errors were normal (constant) or truncated

normal, linear regression often resulted in sizable

over- or underestimates of k that increased substantially

with the amount of error introduced into the simulated

data. Thus, we suggest that log-transforming data to

estimate k with linear regression, the most common choice

of authors in our literature search, should be reserved for

situations in which the data are known to have constant

fractional error; but note that most studies have

insufficient replication to determine data error structure.

If linear regression is used, zero values should be treated

as missing data rather than as arbitrarily small values, as

our simulations found that this greatly improved the

accuracy of linear k estimates. Note that using nonlinear

regression on untransformed data eliminates the issue of

how to treat zero values, as zero values can be included in

nonlinear k estimates. Using nonlinear regression also

avoids the problem of how to deal with de-transformation

bias from equations (or predictions) that were fit in the log

scale. We suggest that careful selection of fitting methods,

as we have described above, will lead to more accurate

and comparable k estimates, thereby increasing our

understanding of this important ecosystem process.
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APPENDIX B

Error structures of real and simulated litterbag decomposition data (Ecological Archives E091-086-A2).

APPENDIX C

The effect of choosing an arbitrarily small value to replace zero values (Ecological Archives E091-086-A3).

APPENDIX D

The effect of additional increases in simulation length on estimates of decomposition rate, k (Ecological Archives E091-086-A4).

APPENDIX E

The effect of changing the standard deviation (SD) of the simulated data on single-pool decomposition rate, k, estimates
(Ecological Archives E091-086-A5).

APPENDIX F

The mean single-pool decomposition rate, k, values from linear regression of log-transformed real data and nonlinear regression
of untransformed real data (Ecological Archives E091-086-A6).

APPENDIX G

Model comparison for Hobbie (2008) litterbag decomposition data (Ecological Archives E091-086-A7).

SUPPLEMENT

R code for performing nonlinear regression, with data (embedded in the R code), and a short description of the program
(Ecological Archives E091-086-S1).
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