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ABSTRACT

Although rising atmospheric concentrations of carbon dioxide (CO;) and
increasing nitrogen (N) deposition are well-documented global changes, their interactive
effects on vegetation are not well understood. This thesis characterizes the physiological
and growth responses of perennial grassland species to combinations of atmospheric CO
and N treatments. Mechanisms operating at leaf, whole-plant, and community levels were
studied using species adapted to N-limited habitats with emphasis on species capable of
accessing atmospheric N through symbiotic N; fixation.

The response of leaf-level gas exchange was measured for 13 species in field
plots exposed to ambient (368 umol mol™) and elevated (560 umol mol™) CO,
concentrations combined with unamended and enriched (+4 gN m™? yr'') N treatments.
All species showed pronounced photosynthetic acclimation resulting in minimal
stimulation (7%) of photosynthesis with CO; enrichment. Elevated CO; decreased
stomatal conductance (24%), leading to increases in intrinsic water-use efficiency.
Increased N supply did not affect leaf-level responses to elevated CO;. The substantial
acclimation of photosynthesis was associated with decreases in stomatal conductance and
leaf N in response to CO; enrichment.

To further investigate the effect of N availability on the CO; response, growth and
physiological responses to elevated CO, were compared between an N-fixer and a non-
N.-fixer across a range of N additions in a growth chamber study. The N,-fixer derived
32% more N from symbiotic N; fixation and accumulated 80% more biomass, regardless
of N addition, under elevated compared to ambient CO;. In contrast, the growth response
to CO; enrichment of the non-N-fixer was limited at low N.

The hypothesis that No-fixers will alleviate N-limitations on the CO; responses of
plants and communities was evaluated in multi-species field assemblages. Photosynthesis
and plant and soil N status were enhanced by the presence of an N»-fixer, however this
did not facilitate greater responses of non-N,-fixers to elevated compared to ambient
CO..

Interspecific variation in acclimation of photosynthesis to CO, enrichment and N
availability, and the contrasting growth responses of N»-fixers and non-N2-fixers, will be
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important determinants of the response of vegetation to future environments.
Furthermore, species interactions may critically modify plant and community responses

to these global changes.



CHAPTER |
Introduction

Background

Human activities have profoundly influenced global carbon and nitrogen cycles.
Since rapid industrial growth began in the mid-eighteenth century, carbon dioxide (CO,)
concentrations in the atmosphere have increased 31% with levels projected to reach
between 540 and 970 umol mol™ by 2100 (IPCC, 2001). Human activity is also altering
the global nitrogen (N) cycle by substantially increasing the inputs of fixed forms of N,
primarily by the extensive use of chemical fertilizers and combustion of fossil fuels
(Vitousek et al., 1997). Since both CO, and N are essential for plant growth, changes in
their concentration and distribution will likely have a profound effect on ecosystems
worldwide. Given the need to understand ecosystem level responses to global change,
improved characterization of the interactive effects of CO; and N on plant and
community processes will prove valuable to basic science, and have implications for
guiding appropriate societal responses to these global changes.

Photosynthesis is a key process mediating plant responses to changes in
atmospheric CO; concentrations. Because CO; is a substrate and a controlling factor in
the reaction governing its uptake, plants growing under increased atmospheric CO; are
predicted to increase rates of photosynthesis and growth. Indeed this response is evident
as rates of CO» assimilation by photosynthesis are shown to increase on average 60% in
C; species following short-term (minutes to hours) exposure to twice ambient
concentrations of CO, (Curtis, 1996; Drake et al., 1997). However, over the longer-term
(weeks to years), this initial stimulation can diminish due to physiological changes that
result in substantial decreases in photosynthetic capacity (e.g., photosynthetic
acclimation; Gunderson & Wullschleger, 1994). Furthermore, the degree of relative
photosynthetic responsiveness to elevated CO, varies substantially among species.
Literature reviews have summarized long-term photosynthetic enhancements in response
to growth under elevated CO; as ranging between 20 and 50% (Bowes, 1993; Schimel,
1995; Curtis, 1996; Medlyn et al., 1999; Wand et al., 1999). Even when species show
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enhanced photosynthetic responses to elevated CO,, these responses do not consistently
translate into increased growth. Growth enhancements may be limited by secondary
responses to elevated CO; such as nutrient acquisition and use, phenology, anatomy,
morphology, biomass allocation and partitioning, and sink strength. Hence considerable
variation in growth responses also exists among species (Poorter, 1993; Curtis, 1996;
Poorter et al., 1996; Ward & Strain, 1999).

The long-term response of photosynthesis and growth to elevated CO; can be
modulated by the availability of other potentially limiting resources, such as nutrients,
water, or light (Drake et al., 1997). For example, the ways in which different species
respond to the availability of N, and how they use N, might explain some of the variation
in photosynthesis and growth seen across species in response to CO; enrichment (Stitt &
Krapp, 1999). Since biologically available N already limit productivity most terrestrial
ecosystems, and because tissue N is a major determinant of photosynthesis (Reich et al.,
1997), photosynthetic and growth responses to elevated CO, may be constrained by N
availability. Much of the uncertainty in predicted responses of vegetation to elevated
CO, is related to our limited understanding of the interactive effects of CO; with N
availability (Vitousek & Field, 1999). Thus, we must consider the influence of N on
photosynthesis and growth to best characterize both individual plant and community
responses to elevated CO,.

In attempting to model ecosystem responses to potential global changes, the
varying characteristics of the many plant species within a community add a level of
complexity. Consequently, species are often grouped into categories based on
similarities in physiology and growth form, such as those with C; or C4 photosynthetic
pathways, woody or herbaceous species, and N»-fixers or non-N,-fixers. These
functional groups have been found to help explain variation in species responses to the
environment and thus provide a way to model the response of complex ecosystems based
on group rather than species parameterizations (Diaz, 1995). However, even species
within the same functional groups can show markedly different responses when grown
under elevated CO» and increased N (Reich er al., 2001b). Furthermore, as plants

compete for resources, an individual plant’s response to elevated CO> and N will not only
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depend on its functional attributes, but also on those of neighboring species. For these
reasons, it is important to evaluate the responses to elevated CO; and increased N of
multiple species from each functional group, growing alone and in combination with
other species, to evaluate the usefulness of these classifications.

Tallgrass prairie provides a model ecosystem within which to study the
interacting effects of increased atmospheric CO; concentrations and N deposition on
growth and physiology of wild perennial species adapted to low N habitats. The effects of
elevated atmospheric CO, and N deposition likely interact in complex ways and
differently at different scales. In addition, we do not know if plants in natural settings
over the long-term will respond the same as they have in shorter-term studies due to
acclimation of photosynthesis and the potential constraints imposed by N-limitation in
natural systems. Furthermore, awareness of the differences in species responses to
atmospheric CO, concentrations and N availability, and how these differences are
manifest in interspecific interactions, are critical to predict plant and community

responses to future environments.

Organization of the Thesis

The main objective of this thesis is to examine the physiological and growth
responses of perennial grassland species to elevated CO; and varying levels of N
availability. Field and growth chamber studies were conducted on plants grown from
seed under experimental treatments of CO,, soil N, and plant species composition. The
field portion took place as part of a larger grassland ecosystem experiment, BioCON

(Biodiversity, CO, and N, http://swan.lter.umn.edwbiocon/, Reich et al., 2001a), located

at Cedar Creek Natural History Area, a National Science Foundation, Long-Term
Ecological Research site in Minnesota, USA. Free-air carbon dioxide enrichment (FACE)
technology elevated the concentration of CO, above experimental plots while allowing
the vegetation to remain exposed to natural temperature, wind, humidity, sunlight, and
soil conditions (Lewin et al., 1992). CO, treatments in combination with unamended and
enriched (+ 4 g Nm™ yr'") soil N treatments allowed the study of multiple species'

responses to elevated CO; and increasing N supply under otherwise similar conditions.
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This field study was augmented by a growth chamber experiment, which allowed a more
detailed investigation concerning mechanisms of CO; and N effects on physiology and
growth operating at the whole plant scale. Table 1.1 provides definitions of abbreviations
and units for parameters presented throughout this thesis.

This thesis begins in Chapter 2 with the BioCON field study of perennial
grassland species. 1 evaluate the response of leaf-level photosynthesis and related
parameters across 13 species grown in monoculture to test hypotheses that leaf net
photosynthetic rates acclimate to elevated CO, concentrations over time and that enriched
N supplies ameliorate this response. In addition, I assess the usefulness of the concept of
functional groups to predict the size and direction of the photosynthetic response across
this range of wild species, which will potentially simplify ecosystem global modeling
efforts. The functional groupings of plants included in this study, based on similar
physiology and growth habits, were C; and C4 grasses. N»-fixing legumes, and
nonleguminous forbs. For this diverse set of species, acclimation of photosynthesis to
elevated CO, was substantial and was not affected by soil N supply. In addition,
variation in species responses to increasing atmospheric CO; and N availability were not
always explained by their functional groupings and will be important determinants of the
response of vegetation to these global changes.

The CO, response of wild species, even those adapted to low N habitats, can be
limited by low N availability. N,-fixers, however, may be able to overcome this
limitation by supplementing mineral N uptake with symbiotic N, fixation. Therefore N,-
fixers provide a unique opportunity to study the interacting effects of CO2 and N on plant
growth. In Chapter 3 [ examine the effects of CO; and N on the functional attributes of
N,-fixers in a controlled-chamber study. To this end, [ compare growth, gas exchange,
symbiotic N, fixation and tissue N responses of an N»-fixer and a non-N,-fixer to
elevated atmospheric CO, concentrations and varying levels of N addition. The results
suggest that N,-fixers may help alleviate N-limitations, at least over the short-term, in N-
poor grassland communities under projected rising atmospheric CO; levels.

In Chapter 4, I return to field experiments to evaluate the effects of the presence

of an N»-fixer in multi-species assemblages on both plant- and community-level
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responses to elevated CO,. At the plant level, I examine the responses of photosynthesis
and tissue N concentrations in three non-N,-fixing species growing in multi-species
assemblages both with and without an N,-fixer. I determine the contribution of N
derived from symbiotic N, fixation and evaluate the influence of Na-fixer presence on
plot-level biomass, and plant and soil N status. Finally, [ evaluate whether the presence
of legumes modifies the response of multi-species assemblages to elevated CO,. Based
on an integration of knowledge of the functional biology of particular species with
community-level processes, [ discuss factors that affect the scaling from physiological
responses to ecosystem responses. Although the presence of an N»-fixer in these N-poor
grassland assemblages enhanced plant and soil N dynamics, which stimulated leaf-level
net photosynthesis of co-occurring non-N»-fixing species, N»-fixer presence did not lead
to greater biomass or photosynthetic responses to elevated compared to ambient CO,.
This thesis provides a bridge between traditional physiological experiments and
those in natural settings by examining physiological responses in both the field and
laboratory. [ examine growth and physiological mechanisms operating at the leaf and
whole plant scales, thus identifying mechanisms that underlie ecological observations.
The consideration of how elevated levels of both CO; and N interact and influence
ecosystem properties via plant responses is a step toward the much-needed connection
between single-species and ecosystem-level changes. The use of experiments exposing
wild species in more natural settings to elevated CO; from the inception of growth, and
over periods longer than just hours or days, provides a temporal dimension missing from
short-term studies. Thus, these studies of tallgrass prairie species contribute information
at multiple scales for inference of ecosystem response to these two important aspects of

global change.
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Table 1.1. Definitions of abbreviations and units for gas exchange and '°N isotope
technique parameters and other terms as used throughout this thesis.

Term Definition Units'
A Rate of leaf net CO, assimilation calculated per unit mol CO» m2 s
leaf area (i.e. net photosynthesis) " 2
Leaf net photosynthetic rate measured at the [CO,] in 2.
Aggrowtn which the plant was grown pmol COr m™s
Ajes and Leaf net photosynthetic rate of plants grown and 2
A3eg measured at ambient [CO,] of 365 or 368 umol mol™! kmol CO,; m™s
Aseoand Leaf net photosynthetic rate of plants grown and 2
A0 measured at elevated [CO,] of 560 or 700 pmol mol™ nmol CO, m™s
A’cco and Leaf net photosynthetic rate of plants grown at current
A’560 ambient [CO,] but measured at an elevated [CO;] of  pmol CO,; m?s™
700 560 or 700 pmol mol™
Am and Leaf net photosynthetic rate calculated per unit leaf nmol CO, g s
Am.@s60 mass 28
gs Stomatal conductance to water vapor mmol H,O m? 5™
Algs Intrinsic instantaneous water-use efficiency mmol CO, (mol H,0)"
SLA Specific leaf area (leaf area per unit leaf mass) cm’g?
PNUE Photosynthetic nitrogen-use efficiency pmol CO, gN' 5™
ci/cy Ratio of intercellular to atmospheric [CO,]
TNC Total nonstructural carbohydrates mg g’
PAR Photosynthetically active radiation (400-700 nm) umol (photons) m? s™
VPD Vapor pressure deficit (between leaf and air) kPa
C Photosynthetic pathway in which CO, is initially
3 converted to a 3-carbon intermediate
C Photosynthetic pathway in which CO, is initially
4 converted to a 4-carbon intermediate
SN Stable isotope of nitrogen
ozl Atom % '°N, the percentage of N atoms that contain
a%"°N
15 compared to the more common 14 neutrons
L Orthogonal linear contrast in Analysis of Variance
q Orthogonal quadratic contrast in Analysis of Variance

' mass units are based on dry mass.



CHAPTER 2

Leaf gas exchange responses of 13 prairie grassiand species to
elevated carbon dioxide and increased nitrogen supply
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Summary

e Leaf gas exchange responses to elevated CO; and N are presented for thirteen
perennial species, representing four functional groups: Cs grasses, Cs grasses,
legumes, and non-leguminous forbs. Understanding how COz and N effects interact s
important to predict plant community response to global change.

e Plants were field-grown in monoculture under current ambient and elevated (560
pmol mol™) CO; concentrations (free-air CO, enrichment), in combination with soil
N treatments, for two growing seasons.

e All species, regardless of functional group, showed pronounced photosynthetic
acclimation to elevated CO», resulting in minimal stimulation of photosynthesis (4)
averaging +15% in C; grasses, +8% in forbs, +7% in legumes and -2% in C, grasses.
The effects of CO; and soil N supply did not interact for any leaf traits measured.
Elevated CO; consistently decreased stomatal conductance (gs) leading to 40%
increase in A/gs.

e This substantial acclimation of photosynthesis was greater in magnitude than in most
field studies and was associated with the combined effects of decreased g, and

decreased leaf N concentrations in response to growth under elevated CO..

' Lee TL, Tjoelker MG, Ellsworth DS, Reich PB. 2001. Leaf gas exchange responses of 13 prairie

grassland species in the field under elevated carbon dioxide and increased nitrogen supply. New Phytologist
150: 405-418.



Introduction

Rising atmospheric carbon dioxide (CO-) concentration is predicted to have
profound effects on ecosystems. Human activity is also altering the global nitrogen (N)
cycle by substantially increasing the inputs of fixed forms of N, primarily by the
extensive use of chemical fertilizers and combustion of fossil fuels (Vitousek ez al.,
1997). The effects of elevated atmospheric CO, and increased soil N on vegetation likely
interact in complex ways and differently at different scales. Although larger-scale field
experiments are increasing in number and longevity, there continues to be a need for field
experiments to determine the extent to which results found in controlled environment
studies apply to intact plant communities (Polley, 1997).

Plant responses to elevated CO; are fundamentally mediated by photosynthesis
(Drake et al., 1997) and can potentially lead to a suite of morphological and growth
changes. It is well documented that increased CO; enhances the photosynthetic rate and
growth of most Cs plants (Bowes, 1993). However, as larger-scale, longer-term studies
are being conducted, findings indicate the degree of this response to be variable and its
persistence over the long-term questionable. To date, photosynthetic responses to
experimentally doubled CO, levels have ranged from neutral, even negative, to strongly
positive in most crop systems, where typical increases average from 20 to 40% (Schimel,
1995). Responses of less studied wild species in natural systems are often considerably
lower in magnitude than crops and in some cases under protracted exposure to elevated
CO,, photosynthetic rates decline, resulting in a complete lack of enhancement (Bowes,
1993 Wand et al., 1999). A reduction in photosynthetic capacity with exposure to
elevated CO, may occur (e.g., photosynthetic acclimation; Gunderson & Wullschleger,
1994), in connection with changes in leaf chemistry and structure, as well as feedbacks
governed by whole plant growth dynamics. Common responses to CO; enrichment
include: decreases in the amount or activity of Rubisco, increases in total non-structural
carbohydrate concentrations, and decreases in leaf N concentration and leaf area to mass
ratios (Curtis, 1996), which collectively should lead to decreased rates of photosynthesis

(Reich et al., 1997). Understanding acclimation of photosynthesis to increased
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atmospheric CO; concentration, and how soil N availability affects this response, is
critical for predicting plant community responses to environmental change.

Potential limitations of resources such as nutrients and light may mitigate
photosynthetic responses to elevated CO; (Drake et al., 1997). Considering the dynamics
and influence of N on photosynthesis and growth becomes critical in the attempt to
characterize individual plant as well as ecosystem responses to elevated CO- (Vitousek e
al., 1997). Since biologically available N currently limits productivity in most
ecosystems, and because tissue N is a major determinant of photosynthesis (Nijs ez al.,
1995; Reich et al., 1997), low N may limit potential photosynthetic enhancement under
elevated CO,. Several simulation models predict that plant CO; responses are
constrained by N limitation (McMurtie & Comins, 1996; Rastetter et al., 1997), although
actual evidence is mixed (Poorter, 1998), ranging from no consistent effect of nutrient
availability on plant responsiveness to elevated CO; (Idso & Idso, 1994, Lloyd &
Farquhar, 1996) to a decreased CO; sensitivity which is linked to low nutrient availability
(Larigauderie et al., 1988; Bazzaz, 1990; Oechel et al., 1994; Leadley & Kormer, 1996;
Poorter, 1998). Thus, a plant’s response to limiting factors other than atmospheric CO
may have a great impact on how it responds to elevated COz (Bowes, 1993).

Research on differential responses to CO, among plant functional groups may
help explain the large degree of interspecific variation in acclimation to elevated CO..

As a way to model the response of complex ecosystems based on group rather than
species parameterizations, functional groups have been proposed because they have been
found to help explain variations in species responses to the environment (Diaz, 1995).
However, Diaz (1995) points out that plant responsiveness to elevated CO, may involve
traits not usually considered in functional group definitions. Evaluating species in more
natural field settings provides the opportunity to identify general patterns associated with
strong or weak responses to elevated COz and to test the usefulness of these functional
classifications.

The overall objective of this experiment was to investigate how elevated CO;
concentrations and increased soil N interact to affect leaf-level physiological processes of

a variety of wild perennial plant species in a field setting and to examine if these
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responses to elevated CO; and N remain similar across two growing seasons. Our
evaluation was done at the leaf level in order to identify potential physiological
mechanisms underlying ecosystem response to these global change elements. In this
study, the following questions are addressed: (1) to what extent do field grown prairie
species acclimate leaf photosynthesis to elevated CO; concentrations and is this response
modulated by soil N supply? and (2) do functional groupings help explain the variation in

species responses to elevated CO; and increased soil N?
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Materials and Methods

Research site

The study site is located at the Cedar Creek Natural History Area in east central
Minnesota, USA (Lat. 45°N, Long. 93°W). The soils are sandy, derived from a glacial
outwash sandplain, and previous experiments have determined nitrogen to be the major
soil resource that limits plant growth (Tilman, 1987). N mineralization rates for
grassland soils at Cedar Creek are estimated to range between 2-3 g m? yr'' (Wedin &
Tilman, 1996). Cedar Creek has a continental climate with cold winters (mean January
temperature = -11 °C), warm summers (mean July temperature = 22 °C), and mean
annual precipitation totaling 660 mm yr'. The average maximum daily temperature and
total precipitation for the 1998 and 1999 growing seasons (April — September) was 25 °C
with 389 mm rainfall in 1998 and 24 °C with 637 mm rainfall in 1999.

Experimental design and the FACE system

The overall experiment, referred to as BioCON (Biodiversity, CO,, and Nitrogen,
http://swan.lter.umn.edu/biocor/), was established in 1997 on secondary successional
grassland after removing previous vegetation (Reich et al., 2001a,b). The study site
consists of six circular areas (20-m diameter), each containing 61- 2 x 2 m plots. The
experimental treatments were arranged in factorial combination of CO; concentration
(368 or 560 umol mol™) and soil N supply [low or high (4 g N m? yr'! added)] with each
species in monoculture replicated twice for every CO2 x N level. The design consisted of
a split-plot arrangement of treatments in a randomized design with CO; treatment as the
whole-plot factor, which is replicated three times among the six rings. The subplot factor
of soil N treatment was randomly assigned to individual plots among the six rings. CO2
was applied using free-air CO; enrichment (FACE) technology (Lewin et al., 1994)
during all daylight hours during the growing season from April 9 to October 16, 1998 and
from April 20 to November 9, 1999. One-minute averages were within 10% of the target
concentration 94% and 95% of the time in 1998 and 1999, respectively. The high N plots
were amended with 4 g N m? yr”', as ammonium nitrate (NHsNQ3) in solid form, in May,

June and July of each year. Monoculture plots of 13 species, representing four functional
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