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Abstract

Studies linking the functional diversity of a biota to ecosystem functioning typically

employ a priori classifications of species into hypothetically complementary groups.

However, multiple alternate classifications exist in which the number of functional

groups, the number of species per functional group, and the grouping of species differ

from the a priori scheme. Without assessing the relative precision, or ability of an a priori

scheme to accurately predict ecosystem functioning relative to its many alternatives, the

validity and utility of analyses based on a single a priori classification scheme remains

unclear. We examine the precision of a priori classifications used in 10 experimental

grassland systems in Europe and the United States that have found evidence for a

significant role of functional plant diversity in governing ecosystem function. The

predictive precision of the a priori classifications employed in these studies was seldom

significantly higher than the precision of random classifications. Post-hoc classification

schemes that performed well in predicting ecosystem function resembled each other

more with regard to species composition than average classifications, but there was still

considerable variability in the manner in which these classification schemes grouped

species. These results suggest that we need a more nuanced understanding of how the

diversity of functional traits of species in an assemblage affects ecosystem functioning.
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I N TRODUCT ION

Widespread declines in biodiversity at both global and local

scales have motivated considerable research directed

towards understanding how changes in biological diversity

may affect ecosystem functioning and derived ecosystem

services (Loreau et al. 2001; Hooper et al. 2005). There is a

growing consensus that functional diversity is likely to be

the component of biodiversity most relevant to ecosystem

functioning (Diaz & Cabido 2001; Hooper et al. 2002;

Naeem & Wright 2003; Reich et al. 2004), where functional

diversity comprises the diversity and range of functional

traits possessed by the biota of an ecosystem. One of the

primary challenges in such research is determining appro-

priate methods for quantifying functional diversity.

The most commonly used technique for quantifying

functional diversity consists of clustering species with

shared taxonomic, physiological and morphological traits

into functional groups, assuming that groups with similar

traits differ in their response to and effect on resources

(Chapin et al. 1996; Lavorel & Garnier 2002; Petchey &

Gaston 2002). The number of functional groups, or

functional group richness (FGR), can then be used as an

approximation of functional diversity in an ecosystem. This

procedure constitutes constructing an a priori functional

classification which contrasts with a post hoc or null approach
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in which all possible functional classification schemes are

examined, irrespective of the ecological or evolutionary

relationships that cluster species, and the scheme that best

predicts ecosystem response to biodiversity loss is consid-

ered the most appropriate functional classification. While

there are merits to both methods, the relative precision of an

a priori scheme to capture functional diversity can only be

assessed by comparing it against its many alternatives.

Most studies examining the effects of FGR on ecosystem

functioning have focused on plant diversity, and have

employed a functional classification scheme based on the

well-established plant functional groups of grasses, non-

leguminous forbs, and legumes (Tilman et al. 1997; Hector

et al. 1999; Naeem et al. 1999; Symstad 2000; Reich et al.

2001), with occasional refinements such as separating

grasses into C3 and C4 grasses (Tilman et al. 1997; Reich

et al. 2001), separating forbs into tall or short forbs (Roscher

et al. 2004), or separating forbs into woody and non-woody

plants (Tilman et al. 1997). While not universally used

(Hooper & Vitousek 1997; Hooper & Dukes 2004), these

functional types encompass a variety of trait differences and

are assumed to represent groups that differentially influence

most terrestrial ecosystem functions including net primary

productivity, carbon sequestration, nitrogen retention,

decomposition, and other processes that affect carbon and

nitrogen cycling. We will refer to this widely used grass–

forb–legume functional classification scheme as the a priori

grass/forb/legume (GFL) classification.

Although widely used, this a priori GFL classification

scheme represents only one of many possible schemes and

its precision remains unknown. For example, S species could

be classified into anywhere from 1 to S ) 1 groups and for

each level of Fmax (i.e. number of groups into which the

species are divided) there exists a large number of ways

species can be classified. For example, given the 34 species

used in the Silwood Park site of the BIODEPTH

experiment (Hector et al. 1999), one could construct over

1028 possible classification schemes. Classification schemes

will vary in their ability to account for covariance between

FGR and ecosystem functioning in experimental plots. The

higher the covariance explained, the higher the precision of

the classification scheme.

The a priori GFL classification has been widely used in

grassland systems (Naeem & Wright 2003) because it is

believed to classify plants by their impacts on ecosystem

functions relatively effectively, a possibility supported by

regression analyses of results from combinatorial manip-

ulative experiments of grassland plant diversity (Tilman et al.

1997; Hector et al. 1999; Reich et al. 2001). However, given

the lack of empirical support that explicitly demonstrates

that species within these functional groups possess com-

plementary traits, and even some evidence to the contrary

(Craine et al. 2002; but see Roscher et al. 2004), the GFL

classification might best be considered a �candidate� group-

ing (Vitousek & Hooper 1993). Support for the a priori GFL

classification is provided by Petchey (2004) who boot-

strapped the F ratio of the change in deviance caused by

removing FGR from regression models that included both

species richness (S) and FGR as the independent variables.

By randomizing species assigned to three functional groups

in the bootstrapped F ratios, Petchey (2004) confirmed that

FGR, assessed using the GFL classification, was a significant

determinant of ecosystem functioning at two to three of the

eight sites in the BIODEPTH experiment. These results

were mirrored by an analysis of the BioCON experiment

which showed that FGR, again assessed using the GFL

classification, had an effect on ecosystem functioning

independent of species richness (Reich et al. 2004). How-

ever, to date, the ability of the �candidate� GFL classification

scheme to predict ecosystem functioning relative to alter-

native classification schemes with the same or different

numbers of functional groups has not been tested.

Regardless of whether the a priori GFL classification

scheme is the best of all possible classifications, it is still an

open question as to whether any classification scheme that

groups species together can effectively describe the func-

tional diversity of an assemblage. Grouping species assumes

that the traits of importance are discrete rather than

continuously distributed among species, that the variance

in traits is smaller within than between species (Chapin et al.

1996), and that if multiple traits are responsible for

controlling ecosystem functions that these traits tend to

be correlated within species, presumably due to trade-offs.

To date, most evidence shows that within assemblages there

tend to be fairly continuous distributions of traits (Craine

et al. 2001, 2002; Reich et al. 2003; Diaz et al. 2004). While at

global scales there is evidence for trade-offs between

different traits thought to modify ecosystem functioning

(Grime et al. 1997; Diaz et al. 2004; Wright et al. 2004),

whether these trade-offs exist within assemblages that exist

in a common environment is unknown (Grime 1998).

Furthermore, using the same classification scheme to predict

ecosystem functioning assumes that the same traits are

responsible for regulating different ecosystem functions.

Thus it is unclear whether or not, an �optimal� classification

exists and whether, even within a given site, the effect of

functional diversity on different ecosystem functions is best

captured by using a single functional classification scheme.

Here, we compare the success of the a priori GFL

classification scheme in predicting three ecosystem func-

tions in 10 experimental grassland ecosystems to randomly

assembled functional classifications. We use a calculation of

the similarity of the top post hoc classification schemes

generated for each site and each ecosystem function to

determine whether they are converging on an �optimal�
classification scheme. We also compare the similarity of the
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top post hoc classification schemes for different ecosystem

functions at a site to determine the degree to which a

�universal� classification scheme, i.e. a scheme that works

equally well for all ecosystem functions, exists.

METHODS

We examined the relationship between functional diversity

and ecosystem functioning using data from grassland

diversity-functioning experiments conducted at 10 sites

(Table 1). Each of these experiments manipulated the

species richness of plots and assessed the effect of

functional diversity on ecosystem functioning by regressing

plot-level measures of productivity, as estimated by above-

and below-ground peak biomass, and nutrient retention, as

estimated by soil nitrogen concentrations, against the

number of functional groups (as defined by the a priori

GFL scheme) present in a plot. The BioCON experiment

was conducted at Cedar Creek Natural History Area,

Minnesota, USA (for details see Reich et al. 2001). We

analysed data from the 1999 growing season in the ambient

plots (i.e. no added nitrogen or CO2). The Cedar Creek

experiment was also conducted at Cedar Creek Natural

History Area (for details see Tilman et al. 1997). We analysed

data from the 1997 growing season (CC) and the average of

data from the 2001–2002 growing season (CC2). CC2 data

were averaged over 2 years to reduce subsampling variance

(Lambers et al. 2004). The BIODEPTH experiment was

conducted at eight different sites across Europe (for details

see Hector et al. 1999; Spehn et al. 2005). We analysed data

from the second year of the experiment at each site. Note

that relationships between a priori FGR and ecosystem

functioning may differ from values previously reported

because: our analyses use data from different years than

previously reported analyses, in some cases the data sets

provided contained different numbers of plots than in

Table 1 The relationship between functional diversity and ecosystem functioning in grassland studies

Site Species Plots Functional classification

Ecosystem

function

R2 (F vs. EF)

a priori

A priori

percentile

BioCON 16 74 C3, C4, F, L Above 0.043 48.2

Below 0.001 19.1

Soil N 0.114 99.3

Cedar Creek (1997) 18 163 C3, C4, F, L, W Above 0.081 40.7

Below 0.095 99.9

Soil N 0.050 87.3

Cedar Creek 2 (2001–2002) 18 163 C3, C4, F, L, W Above 0.359 43.4

Below 0.386 90.2

Soil N 0.016 96.4

Germany 31 60 G, F, L Above 0.504 99.9

Below 0.016 100

Portugal 14 41 G, F, L Above 0.143 40.8

Below 0.120 0.4

Switzerland 47 64 G, F, L Above 0.577 100

Below 0.006 89.2

Greece 23 52 G, F, L Above 0.002 66.5

Below 0.001 54.8

Ireland 12 70 G, F, L Above 0.134 4.6

Below 0.038 99.5

Sweden 12 54 G, F, L Above 0.269 44.0

Below 0.095 2.6

Gr. Britain A (Sheffield) 12 54 G, F, L Above 0.432 7.7

Below 0.124 70.6

Gr. Britain B (Silwood Park) 34 66 G, F, L Above 0.181 93.6

Below 0.178 100

Functional Classification lists the functional groups used in the a priori functional classification (C3 ¼ C3 grass, C4 ¼ C4 grass, F ¼ forb,

G ¼ grass, N ¼ legume, and W ¼ woody). Ecosystem functions are peak above-ground biomass (Above), peak below-ground biomass

(Below), and soil nitrogen concentrations (Soil N). R2 values for relationships between a priori functional group richness (F) and ecosystem

functioning (EF) that are significant at p < 0.05 are listed in bold. A priori percentile indicates where the R2 from the a priori relationship falls

within the distribution of R2 values obtained using random classification, with values greater than 95% indicated in bold.
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earlier analyses, plots with no species planted were excluded

from our analysis, and, for consistency, only linear

regressions were used in our analyses while some of the

previously published studies log-transformed FGR (Tilman

1997).

We developed post hoc classifications using Monte Carlo

methods to randomly classify species from these experi-

ments at values for Fmax (i.e. number of groups into which

the species are divided) for each site from 2 to S ) 1, where

S is the number of species employed in each experiment.

Values of 1 and of S were not tested because they

correspond to the intercept-only or a species richness

model, respectively. There are justifications for comparing

the a priori classifications only to post hoc classifications with

the same Fmax (Petchey & Gaston 2002). However, we were

explicitly testing whether the a priori classifications could

outperform any other functional classification scheme, as we

felt the assumption that the optimum classification scheme

contains three or four groups was unsupported. Clearly, our

results will depend on the selection of our particular null

model (Gotelli & Graves 1996). However, in 17 out of the

25 comparisons (data not shown), the highest performing

post hoc classification had an Fmax below 4. Therefore, the

bias of our particular null model, if any, was to support the a

priori classification scheme by including comparisons with

post hoc classifications with a high Fmax. For each site we

constructed 50 000 randomized classifications. In each

classification, one species, chosen at random, was assigned

to each functional group from 1 to Fmax. Any remaining

species were assigned to groups at random. To ensure that

all possible levels of Fmax were sampled, we first constructed

three random classifications for each level of Fmax between

2 and S ) 1. For all remaining classifications the level of

Fmax was determined randomly such that the probability of

any given level of Fmax equalled the proportion of the

number of combinations with that level of Fmax within the

population of all possible combinations. After creating each

classification, we counted the number of groups present in

each plot and performed ordinary least-squares regression

between the number of groups and the level of ecosystem

functioning measured in each experimental plot. The

precision of post hoc classification schemes was estimated

as the R2 of the linear regression between FGR (the number

of groups into which the post hoc scheme classified the

species present in each experimental plot) and ecosystem

functioning measurements for each experimental plot.

Repeated runs of 50 000 iterations yielded similar distribu-

tions of R2 values, suggesting that this level of replication is

sufficient to estimate the distribution of the entire popula-

tion of classifications.

We determined the relative precision of the a priori

scheme by comparing the R2 of the regression in the original

study to the distribution of R2 values generated by the

post hoc classifications. We examined three commonly

assessed ecosystem functions: (1) above-ground plant

biomass, (2) below-ground plant biomass, and (3) soil

nitrogen concentrations.

To assess the degree to which the top-performing post hoc

classification schemes for each ecosystem function at each

site grouped species together, we calculated a similarity

index derived from Jaccard’s similarity index for pairs of

classification schemes (Magurran 1988): Similarity ¼
j/(a + b ) j), where j is the number of species pairs that

are classified together in both classification schemes, a is the

number of species pairs classified together in Classification 1

and b is the number of species pairs classified together in

Classification 2. This similarity score ranges from 0 when

the two classification schemes do not group any species

pairs in the same manner to 1 when all of the species pairs

grouped together in one classification are also grouped

together in the other classification. We arbitrarily selected

the 50 classification schemes with the highest R2 between

FGR and ecosystem function, representing the top 0.01% of

all post hoc classification schemes and calculated the similarity

index for each pair-wise comparison within this group. We

then selected a random set of 50 from the remaining 49 950

classifications and calculated all pair-wise similarity scores as

a null comparison. The Jaccard’s similarity index is biased by

the number of species in a community (in this case, the

number of species in an experiment) (Magurran 1988), so to

standardize the similarity of classification schemes between

experiments with different numbers of species, we calcula-

ted an Associative Similarity Index (SimTOP ) SimRAN)/

SimRAN, where SimTOP is the mean pair-wise similarity of

the top 50 classification schemes for a given site and

ecosystem function and SimRAN is the mean pair-wise

similarity of the randomly selected 50 classification schemes

for the same site and ecosystem function. This index

provides an estimate of the degree to which the top

50 classifications are more similar to each other in the

manner in which they grouped species together than are 50

random classifications, e.g. an ASI of 1 indicates that the

average similarity of pairs of top classifications is 100%

greater than the average similarity of pairs of randomly

selected classifications.

If the most precise classification schemes for different

ecosystem functions at a given site grouped species together

in a similar fashion, this would provide evidence for the

existence of a single classification scheme that works equally

well for all ecosystem functions at that site. To test this

hypothesis, we used the Associative Similarity Index

described above to calculate the mean of all pair-wise

similarity scores between the top 50 classification schemes

from two different ecosystem functions at a given site and

the mean of all pair-wise comparisons of 50 random

classification schemes from each ecosystem function. We
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then calculated the Associative Similarity Index for each

combination of two ecosystem functions at each site as

described above. Because no sites used the same set of

species, we were unable to test the similarity of functional

classifications across sites.

RESUL T S

For 11 of the 25 cases, the a priori GFL functional scheme

had a level of precision that was at or below the median for

the post hoc classification schemes (Fig. 1, Table 1). Although

at most sites (17 of 25), the relationships between F and

ecosystem functioning using the a priori GFL functional

classification were statistically significant, these relationships

were typically weak, with the R2 of the regression exceeding

0.2 in only six instances. Furthermore, in only five instances

did the R2 of statistically significant relationships between

FGR and ecosystem functioning using the a priori GFL

classification fall above the 95th percentile of the distribu-

tion of R2 values generated using post hoc classifications.

The a priori GFL classification scheme performed best

when predicting below-ground biomass, outperforming post

hoc classification schemes at four of the sites. At one site

(Germany), the a priori GFL functional classification scheme

outperformed random classifications for both above- and

below-ground biomass. However, across all sites, there was

no correlation between the relative success of a priori

functional groups in predicting above- and below-ground

productivity at a site (Pearson correlation coefficient ¼
0.224, n ¼ 11, p ¼ 0.51).

We analysed data from the Cedar Creek experiment at

two different time points (1997 and 2001–2002), and

although the precision of the a priori GFL classification

scheme increased dramatically over time for both above-

and below-ground biomass, the rank of the a priori GFL

classification scheme relative to the random classifications

remained similar.

The average pair-wise similarity of the 50 top-performing

classification schemes created by randomization for a given

ecosystem function was generally low, ranging from 0.043

(Switzerland, above-ground biomass) to 0.242 (Sweden,

below-ground biomass). However, across all sites, the

average similarity of the top 50 classifications was approxi-

mately double the similarity between 50 classifications

drawn at random from the remaining 49 950 classifications

(Fig. 2). Overall, at a given site, the average pair-wise

similarity of 50 top-performing classification schemes for

Figure 1 The distribution of R2 values between functional group

richness and (a) above-ground biomass, (b) below-ground biomass,

and (c) soil nitrogen concentrations using random classifications at

10 experiments (BC ¼ BioCON, CC ¼ Cedar Creek 1997,

CC2 ¼ Cedar Creek 2001–2002, Ger ¼ Germany, Por ¼ Portu-

gal, Swi ¼ Switzerland, Gre ¼ Greece, Ire ¼ Ireland, Swe ¼
Sweden, GBA ¼ Sheffield, GBB ¼ Silwood Park). The middle

bar of each box represents the median values of the distribution,

the upper and lower edges of each box, the 75th and 25th

percentile respectively, the whiskers the 90th and 10th percentile,

and additional dots, outliers. The R2 value of the relationship

between functional group richness and ecosystem functioning

using a priori GFL functional classifications at each site is indicated

by the dash.
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Figure 2 Similarity of the top 50 post hoc classifications in grouping

species together relative to a random selection of 50 post hoc

classifications within and between ecosystem functions. An

Associative Similarity Index (see Methods for details of calculation)

of 0 represents no difference in mean pair-wise similarity between

the top 50 classifications and the randomly selected 50 classifica-

tions while a score of 1 represents a 100% increase in mean pair-

wise similarity between the top 50 classifications and the randomly

selected 50 classifications. Mean ASI are shown with 1 standard

error.
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Figure 3 The relationship between functional diversity as estimated using a priori GFL classification scheme (open squares) and the best

performing post hoc classification scheme (closed circles) and above-ground biomass for all sites. Functional diversity is the fraction of all

possible functional groups planted in each plot. Note that functional diversity values for the a priori classification have been slightly offset for

clarity. Best-fit linear relationships between functional diversity and ecosystem functions using a priori classification scheme (dotted line) and

post hoc classification scheme (solid line) are also shown. (a) BioCON, (b) Cedar Creek 1997, (c) Cedar Creek 2001–2002, (d) Germany, (e)

Portugal, (f) Switzerland, (g) Greece, (h) Ireland, (i) Sweden, (j) Sheffield, (k) Silwood Park.
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Figure 4 The relationship between functional diversity as estimated using a priori GFL classification scheme (open squares) and the best

performing post hoc classification scheme (closed circles) and below-ground biomass for all sites. Functional diversity is the fraction of all
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different ecosystem functions was lower than the similarity

of the top 50 classification schemes within an ecosystem

function, ranging from 0.048 (Switzerland above-ground

biomass vs. below-ground biomass) to 0.18 (Ireland, above-

ground biomass vs. below-ground biomass). However, the

average similarity of the top 50 classifications across

ecosystem functions was still higher than the similarity of

50 random classifications across functions (Fig. 2).

In general, the ability of the best post-hoc classification to

predict ecosystem functioning was higher when predicting

above-ground biomass than when predicting below-ground

biomass and soil nitrogen (Figs 3–5).

D I SCUSS ION

These findings show that for key ecosystem functions many

possible functional classification schemes exist that can

potentially predict ecosystem response to changes in

biodiversity and many of these have greater explanatory

power than the a priori GFL classification commonly in use.

In spite of its wide use, due to the appeal of its biological

foundation, the GFL classification scheme often has low

explanatory power, and may, in many instances, be no more

effective than classifying species into completely random

groups. Alternative schemes for assessing functional diver-

sity based explicitly on ecophysiological and morphological

traits of species (Craine et al. 2002; Petchey & Gaston 2002;

Reich et al. 2003; Mouillot et al. 2005), while potentially

more system-specific (but see Diaz et al. 2004; Wright et al.

2004) and dependent on initial trait selection and weighting,

may capture more of the functional variation that leads to

diversity effects than traditional functional classifications

(Petchey 2004). The post hoc methods outlined here are

another potential solution to the challenge of identifying the

functional groups responsible for maintaining ecosystem

functioning. However, it is important to note that post hoc

methods identify best-fit functional groups for existing

experiments. As such, to avoid risks of non-independence

or circularity, they require independent empirical tests that

can confirm the efficacy of such groupings. In addition,

although the post hoc method can identify groupings that

perform well in predicting ecosystem functions, without

further analysis, it still does not reveal which functional traits

are important for establishing a mechanistic understanding

of the biotic controls on the ecosystem function of interest.

The ability of the optimal post hoc classification schemes to

predict ecosystem functioning was much higher for above-

ground biomass than for either below-ground biomass or

nitrogen retention (as estimated by soil nitrogen concentra-

tions). It is possible that this result reflects a flaw in theory

that predicts that functional differentiation should be equally

important in regulating primary production and nutrient

cycling. However, it seems more likely that in annual

grasslands, peak above-ground biomass represents an

adequate surrogate for primary productivity, while below-

ground biomass and soil nitrogen concentrations are poor

surrogates for primary productivity and nutrient retention

respectively, because of year-to-year carryover of below-

ground biomass and rapid nitrogen cycling in these frequently

nitrogen limited systems. It is also possible that the low

degree of explanatory power in some of our relationships was
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Figure 5 The relationship between functional diversity as estimated

using a priori GFL classification scheme (open squares) and the best

performing post hoc classification scheme (closed circles) and soil

nitrogen for all sites. Functional diversity is the fraction of all

possible functional groups planted in each plot. Note that functional

diversity values for the a priori classification have been slightly offset

for clarity. Best-fit linear relationships between functional diversity

and ecosystem functions using a priori classification scheme (dotted

line) and post hoc classification scheme (solid line) are also shown.

(a) BioCON, (b) Cedar Creek 1997, (c) Cedar Creek 2001–2002.
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due to significant non-linearity in the response of ecosystem

functioning to changes in functional diversity. However, such

non-linearities were not readily observed.

Furthermore, while for a given ecosystem function at a

particular site, the top-performing post hoc classifications did

group species together in a more similar fashion than a

random selection of post hoc classification schemes, the

overall similarity was quite low. This suggests that there are

multiple ways to group species that still result in a relatively

high ability to explain the covariance between FGR and

ecosystem functioning. The lack of a single �optimal�
classification scheme could be because there are only a

few species that are driving ecosystem function (Grime

1998) and as long as they are classified appropriately, the

classification of the remaining species is irrelevant. Alter-

natively, this result could be due to the fact that because

traits are distributed in a continuous fashion within an

assemblage or there is little correlation between traits, there

is no single optimal classification. If this is the case,

functional diversity will be more appropriately characterized

by a multivariate index of what volume of �trait-space� a

group of species occupies (Walker et al. 1999; Petchey &

Gaston 2002; Mouillot et al. 2005) than a simple count of

arbitrary functional groups. Without further data on the

distribution of traits among species and a better under-

standing of which traits affect ecosystem functioning, it is

difficult to distinguish between these two hypotheses.

Given that top-performing post hoc classification schemes

were less similar between than within ecosystem functions,

the existence of a �universal� classification scheme, i.e. one

that performs equally well in capturing the effects of

functional diversity on multiple ecosystem functions, seems

unlikely. Different ecosystem functions are quite likely to be

strongly affected by different traits, and the form of the

relationship between functional diversity and ecosystem

functioning can vary across ecosystem functions, and

ecosystems. For example, nitrogen retention will be driven

primarily by traits that affect nitrogen uptake (e.g. tissue

C:N, root distribution, symbiotic nitrogen fixation) and

decomposition, while productivity will be driven by traits

related to carbon acquisition (e.g. photosynthetic rate, water

use efficiency, plant architecture). While some of these traits

are likely to be correlated, representing differing resource

acquisition strategies (Wright et al. 2004), large databases

analysing the distribution of traits among species tend to

find an even distribution of species in trait-space rather than

the distinct clustering that would indicate unique resource

acquisition strategies (Craine et al. 2001; Diaz et al. 2004). To

the extent that the top-performing post hoc classification

schemes for predicting different ecosystem functions at a

site are more similar to each other than are random

classifications, one could argue that classifications that work

well for one ecosystem function work well for another.

However, given the low overall similarity, it is likely to be

more profitable to investigate exactly which plant traits are

responsible for particular ecosystem functions and to only

include relevant traits in future calculations of functional

diversity.

Collectively, our findings suggest that the use of the

a priori GFL classification by current studies has under-

estimated the role of functional diversity for two reasons.

First, the a priori GFL functional classification has often

been an ineffective scheme compared to alternatives

identified by the Monte Carlo post hoc method. Second,

given the analysis of the similarity of classification schemes

both within and between ecosystem functions at a site, it

appears that there is unlikely to be any single grouping of

species that accurately captures the functional diversity of an

assemblage. Given global declines in biodiversity due to

habitat transformation, biological invasions, and overexploi-

tation (Wilcove et al. 1998), understanding the ecosystem

consequences of such widespread change remains one of

the major challenges of contemporary ecological research

(Loreau et al. 2001, 2002). To the extent that biodiversity

loss involves losses in functional diversity, identification of

effective measures of functional diversity are necessary to

predict changes in ecosystem functions and the services

derived from them (Daily et al. 1997).
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