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Abstract. Biodiversity includes both taxonomic and functional aspects, each of which
can play significant roles in ecosystem functioning. The number of functional groups,
specifically intratrophic group (e.g., plant or herbivore) functional richness (F ), serves as
a simple index of ecological diversity, while species richness (S) serves as a simple index
of taxonomic diversity. F and S are, however, roughly correlated measures of biodiversity,
and disentangling the relative influence of one over the other on ecosystem functioning
(H ) requires a multivariate index. Appropriate multivariate biodiversity indices can be
derived by applying principal component analyses to the set of possible combinations of
S and F in an experimental design. The first principal component (PCAI) represents co-
variation between F and S, while the second principal component (PCAII) provides infor-
mation on functioning that is associated with the independent effects of F and S. Thus, one
can replace the conventional model H 5 f(F, S ) with H 5 f(PCAI, PCAII). This approach
obviates a number of statistical problems encountered when following the traditional ap-
proach. Furthermore, if the question being addressed concerns the relationship between
biodiversity and ecosystem functioning and not the relative contributions of F and S, PCAI
may be used to develop more tractable, yet effective experimental designs than the con-
ventional, exhaustive F 3 S experimental studies currently in favor. I explore the theoretical
foundation for this multivariate approach and provide an example using the results from
experimental prairie grassland plant assemblages at Cedar Creek Natural History Area,
Minnesota, USA. This study highlights the need to adapt traditional, taxonomic approaches
to biodiversity research to include functional diversity.

Key words: biodiversity; ecosystem functioning; functional groups; principal components anal-
ysis; species richness.

INTRODUCTION

Research on the relationship between diversity and
ecosystem functioning has generated a new kind of
experiment: one in which biodiversity is manipulated
in a combinatorial fashion and ecosystem functioning
is measured as a response variable to these manipu-
lations (Naeem et al. 1995, 1996, Tilman et al. 1996,
Hector et al. 1999). While the experiments themselves
are relatively straightforward in design, interpreting
their findings has been difficult and a source of much
debate (Tilman et al. 1997b, Wardle et al. 1997, 2000,
Allison 1999, Kaiser 2000, Naeem 2000). One of the
most active areas in this research concerns how to de-
termine which of several mechanistic explanations of
diversity’s impacts on ecosystem functioning is best
supported by experimental results (Huston 1997, San-
karan and McNaughton 1999, Engelhardt and Ritchie
2001, Loreau and Hector 2001, Loreau et al. 2001,
Tilman et al. 2001, Wardle 2001). Another central dif-
ficulty, which is the topic of this study, concerns dis-
entangling the effects due to intratrophic functional
diversity (e.g., functional diversity within trophic
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groups such as plant functional or decomposer func-
tional diversity) from those due to taxonomic diversity
(Körner 1993, Chapin et al. 1996, Mooney et al. 1996,
Gitay and Noble 1997, Hooper and Vitousek 1997, Til-
man et al. 1997a, Hooper 1998, Symstad 2000, Reich
and Bolstad 2001, Reich et al. 2001b). That is, eco-
system functioning (H ), such as production or nutrient
flux, is a function of species richness (S) and functional
richness (F ), or H 5 f(F, S). Determining the relative
contributions of F and S to H is important because it
provides insights into the mechanisms by which bio-
diversity may contribute to ecosystem functioning
(Hooper 1998, Hooper and Vitousek 1998). The rela-
tive contributions of F and S to H is also important in
management and conservation because it provides in-
formation on ecological redundancy (Walker 1992,
1995, Lawton and Brown 1993, Gitay et al. 1996,
Naeem 1998) where ‘‘ecological redundancy’’ refers to
taxonomically different species that exhibit similar or
related ecological functions (e.g., late-season grasses
in plant communities or nitrogen-fixing microbes in
microbial communities). Here, I focus on analytical and
interpretive issues surrounding these synthetic exper-
iments. Broader issues concerning functional groups
are reviewed in Chapin et al. (1996), Mooney et al.
(1996), Diaz and Cabido (2001), and Hooper et al. (in
press).
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FIG. 1. The relationship between S and F in biodiver-
sity–ecosystem functioning experimental designs. Each
point represents a permissible treatment in the S 3 F plane.
The boundaries are indicated by the formulae. Open circles
represent types not usually employed because S/F is not
an integer. Note the rhomboidal shape of the space indi-
cated by the points. This rhomboid indicates that S and F
are correlated. Note also that one could eliminate this cor-
relation by designing an experiment by selecting Smin and
Smax such that they enclose a square of points. Because the
number of functional groups is generally small and near
or above the often observed asymptotic relationship be-
tween S and ecosystem functioning, it is an option that is
avoided.

A fundamental problem in disentangling effects due
to F vs. effects due to S is that F and S covary, requiring
the separation of effects due to covariation from the
independent effects of F and S. For most ecosystems,
it is generally unknown to what degree S and F covary
or are correlated. At an elementary level, they are ob-
viously correlated in the sense that monocultures (S 5
1) generally correspond with monofunctional groups
(F 5 1), while polycultures (S . 1) are very likely to
have more than one functional group (F . 1). Thus,
correlations between S and F can theoretically range
from slightly above 0.0 to 1.0, depending on how tight-
ly coupled taxonomic and functional diversity are in a
given community. Currently, taxonomic diversity is
more often better known or more readily derived than
functional diversity, but if S and F are not strongly
correlated, S will not serve as a surrogate for F, and it
becomes impossible to know what the consequences to
ecological function will be if the only information to
hand is S. Ecologists have tackled this problem with
experiments that follow factorial designs in which S
and F are treated as independent factors and manipu-
lated by varying the numbers (levels) of functional
groups and species in each treatment (specific combi-
nation of S and F ). Treatments are replicated and spe-
cies assigned at random to each replicate in an attempt
to explore the realm of all possible combinations. In
theory, each treatment represents a point in a bivariate
space defined by F 3 S, and measurements of H rep-
resent points on an ecosystem functioning response sur-
face defined by F 3 S. One can also conceptually en-
vision this as a vector field in which DH is the resultant
vector, and DF and DS are the independent (orthogonal)
vectors.

Unfortunately, this H 5 f(F, S) response surface is
not rectangular (Fig. 1) due to ‘‘forbidden’’ combina-
tions that leave corners of the response surface empty,
generating a correlation (rF,S). Here, ‘‘forbidden’’ refers
to combinations that either cannot be made due to the
experimenter’s functional group designations (i.e., a
single species belongs to one functional group, thus no
combination can have S . F ) or the limitations of
experimental design do not permit certain combinations
(i.e., the upper limit to S and F are set by practical
limitations) (see Designs of biodiversity experiments:
Conventional designs of biodiversity . . . , below, for
further explanation). This non-rectangular (i.e., non-
orthogonal) pattern created by the forbidden combi-
nations is the root of the difficulty in separating S and
F effects from one another. That is, S and F are not
orthogonal, independent factors, which means that the
H 5 f(F, S) response surface is inappropriate for ex-
ploring the relative contributions of F and S to H.

While the problem of ‘‘forbidden’’ treatments is
unavoidable, a solution to the non-orthogonal axes
is readily achieved. The solution involves use of
principal components (PC), a method of factor anal-
ysis in which orthogonal, multivariate axes are de-

rived from a set of covarying or correlated variables.
Applying principal components analysis (PCA) to
the set of S and F values for each treatment that can
be employed in a full biodiversity–ecosystem func-
tioning design provides orthogonal (completely un-
correlated) multivariate axes that provide an appro-
priate space for exploring the H 5 f(F, S) response
surface for the purposes of disentangling F and S
effects. PCA provides an effective means for resolv-
ing the problems of disentangling F from S effects.
I describe this PCA method, provide an example, and
discuss the implications of this approach. The ex-
ample study is taken from an experimental manip-
ulation of plant functional group and species richness
in experimental prairie grassland plots at Cedar
Creek Natural History Area, Minnesota, USA.

DESIGN OF BIODIVERSITY EXPERIMENTS

Conventional designs of biodiversity–ecosystem
functioning experiments

Establishing an experiment designed to test basic
hypotheses about the relationship between intratrophic
biodiversity and ecosystem functioning is straightfor-
ward, but difficult because of the large number of rep-
licates needed (Naeem et al. 1995). Because the re-
sponse surface is defined by F 3 S, one would expect
the number of treatments (number of levels of F 3
number of levels of S ) to rise rapidly (e.g., N 5 F 3
S, where N is the number of treatments) with increasing
biodiversity. In reality, however, there are two bounds
on the possible combinations of S and F. These are (1)
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TABLE 1. Correlation coefficients (rF,S) for experimental designs ranging from Smax 5 1 to 25,
and Fmax 5 1 to 10.

F

S

1 2 4 8 16 32 64 128 256

1
2
3
4
5
6
7
8
9

10

0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

0
0.721
0.944
1
0
0
0
0
0
0

0
0.57
0.733
0.818
0.909
0.958
0.992
1
0
0

0
0.497
0.608
0.656
0.729
0.766
0.818
0.85
0.89
0.921

0
0.461
0.535
0.567
0.606
0.632
0.662
0.682
0.713
0.736

0
0.444
0.502
0.524
0.546
0.561
0.578
0.588
0.605
0.616

0
0.435
0.483
0.502
0.517
0.526
0.535
0.541
0.55
0.555

0
0.431
0.475
0.491
0.502
0.508
0.514
0.518
0.522
0.526

Note: 0 means either there is no variation in either S or F or this is a forbidden combination.

F # S, and (2) F $ S/(Fmax/Smax). Note that condition
1 is always true, while condition 2 is a convention.
These bounds create a ‘‘rhomboidal’’ response surface
as shown in Fig. 1.

It is immediately apparent from Fig. 1 that F and S
are correlated. That is, using the formula for the stan-
dard Pearson product-moment correlation,

N N

F SO ON i i
i51 i51F S 2O i i Ni51

r 5 . 0F,S
   2 2N N   F SO O1 2 1 2N N   i51 i51Î 2 2F 2 S 2   O Oi iN Ni51 i51   

(1)

where N is the number of treatments, and i is the ith
F by S treatment. Using the above formula, I calculated
the correlation for all experimental designs ranging
from F 5 1 to 10 and S 5 1 to 256. Table 1 summarizes
these results, which are graphed in Fig. 2. Note that
statistical interpretation requires that the data meet the
usual assumptions of parametric statistics, which in this
case would best be met if the number of replicates for
each S and F combination were the same to assure even
sampling of the distribution. Furthermore, it is prob-
ably most useful when all monocultures are represent-
ed.

Because the realm of all combinations is enormous,
two arbitrary conventions are usually employed in bio-
diversity–ecosystem functioning experiments to ensure
unbiased, uniform exploration of this realm. First, re-
searchers use levels of S as increments of 2x, where x
varies from 0 (monocultures) to x 5 ln(Smax)/ln(2) or
log2(Smax). This convention reduces the number of treat-
ments, making a more tractable experiment, and it is
consistent with the observation that many patterns in
nature concerning S follow logarithmic scales (Preston
1962a, b, May 1975, Rosenzweig 1995). I will hence-
forth refer to this practice as the ‘‘log2(S ) convention.’’
Second, researchers prefer that (S/F ) 5 an integer. This

convention is followed to ensure evenness of functional
groups in treatments. It also permits more tractable
design, substantially reducing the number of replicates.
For example, following the log2(S ) convention, an F
5 4, S 5 16 experiment in which S/F is not constrained
to integer values would require 34 treatments, whereas
imposing an S/F 5 integer constraint reduces the ex-
perimental design to just 11 treatments. Such benefits
are greater for larger experiments. For example, fol-
lowing the log2(S ) convention, F 5 4 and S 5 32 makes
78 treatments, but imposing the S/F 5 integer con-
straint results in a design with only 15 treatments. I
will henceforth refer to this practice as the ‘‘S/F 5
integer’’ convention.

There are several different conventional, parametric,
and analytical approaches one can apply to results from
the conventional biodiversity–ecosystem functioning
experiments described above. These are (a) complete
factorial analysis of variance (ANOVA) (H 5 constant
1 S 1 F 1 S 3 F, where F and S are categorical
variables), (b) multiple regression (H 5 constant 1 S
1 F, where F and S are treated as continuous variables),
(c) analysis of covariance, model I (ANCOVAI), where
F is a categorical variable and S is a covariate, and (d)
ANCOVAII, where S is a categorical variable and F is
a covariate.

There are several disadvantages to these conven-
tional approaches (a–d). First, because S and F are
ordered variables, information is lost if they are used
as categorical variables in ANOVAs or ANCOVAs.
Second, the design is unbalanced (empty cells) because
of the ‘‘forbidden’’ treatments, which means that hy-
pothesis testing is sensitive to the method chosen for
calculating sums of squares when using general linear
models. Third, because S and F are correlated, as shown
above, they are not truly independent factors, making
it unwise to treat them as independent categorical var-
iables in ANOVA. Fourth, collinearity, such as that
between F and S, is inappropriate for multiple regres-
sions (Philippi 1993). Here, ‘‘collinearity’’ refers to
one independent variable being a linear combination
of other independent variables in a multiple regression,



2928 SHAHID NAEEM Ecology, Vol. 83, No. 10

FIG. 2. Correlations between S and F (rF,S) for experi-
mental designs in which F ranges from 1 to 10 and S ranges
from 1 to 256. These correlations are calculated for full ex-
perimental designs that do not follow the log2(S) or (S/F ) 5
integer conventions, which represent the best experimental
design possible. Correlations would be slightly stronger (an
undesired result) if log2(S) were used, and slightly weaker (a
desired result) in some instances if the (S/F ) 5 integer con-
vention were used, but the pattern would be identical. That
is, the pattern showing that rF,S begins to level off at 0.40
would remain the same. This asymptotic approach to 0.40
indicates that it is virtually impossible to get away from the
undesired correlation between S and F (a non-orthogonal de-
sign) in such S 3 F biodiversity-functioning experiments.
Large, solid circles represent designs of three current exper-
iments (BioCON, BIODEPTH [e.g., Hector et al. 1999], and
Cedar Creek experiments [e.g., Tilman et al. 1996, 1997]) for
reference.

which inflates variation and adversely affects proper
estimates of regression coefficients (Philippi 1993).
Note, however, that the test remains appropriate (i.e.,
rejecting the null hypotheses of slope or intercept 5
0.0), even if estimating coefficients is problematic.

Using PCA to identify independent F and S effects

If we consider each treatment as a measure of po-
tential F and S influence over H, then applying PCA
to this set of numbers provides two orthogonal axes
that represent linear transformations of F and S (see
Pielou 1984 and Manly 1994 for discussions of PCA).
One may use the covariance or correlation matrix when
conducting PCA, the correlation matrix being preferred
when variables are unrelated (recall that correlations
represent standardized covariances) (Manly 1994).
PCA applied in this way identifies two axes. The first
axis (PCAI) maximizes the variance it can explain and
represents rF,S. The second axis (PCAII) is orthogonal
to the first and represents the remaining variance. The
data can now be described by this transformation, and
its values are known as PC scores. The linear trans-
formation for PCAI is

¯F 2 F c1,i 1,F ¯S 5 s 1 S (2)1,i S1 21 2s cF 1,S

where c1,F and c1,S are the eigenvectors for the first PCA,
F̄, sF 5 the mean and standard deviation of F, S̄, ss

are the mean and standard deviation for S, and S1,i is
the transformed value for the ith S value. Note that
when using the correlation matrix rather than the co-
variance matrix, c1,F 5 c1,S, so the ratio of these is 1.
A similar formula can be written for S2i, F1i, and F2i.

After employing PC, further analyses can be done
by linear regression methods. One regresses H against
PCAI and PCAII using a multiple regression model.
There are several advantages of this method over meth-
ods a–d described above. First, PCAI and PCAII are
uncorrelated (mathematically, PCAs are orthogonal to
one another) obviating the problem of collinearity be-
tween F and S. Second, PCAI provides a meaningful
measure of biodiversity in the sense that it simulta-
neously captures taxonomic and functional diversity.
Third, PCAII has the potential to provide information
on the independent effects of F and S. Of course, meth-
od b, above, and this method are identical in terms of
identifying a linear association between H and F and
S. PCA axes represent linear transformations of the
original F 3 S axes; therefore overall significance (P
value) and the coefficient of determination (R2, or the
ratio of sums of squares explained by regression to the
total sums of squares) are identical for H 5 f(S, F) and
H 5 f(PCAI and PCAII). But because the variables
used in the PCA multiple regression method are or-
thogonal, they are more readily interpretable than the
conventional method.

AN EXAMPLE

To illustrate the above with an example, I used data
from the BioCON experiment. I only briefly describe
the experiment itself as complete details on the methods
are published elsewhere (Reich et al. 2001a, b), and
this example is provided solely for the purposes of
illustration.

Methods

Briefly, this experiment closely follows the tradi-
tional biodiversity–ecosystem functioning design. It
was designed to compare the impacts of plant biodi-
versity, elevated CO2, and increased rates of N depo-
sition on ecosystem functioning (hence the acronym
BioCON). I focused on the ambient plots, and thus will
not provide detail on the N and CO2 treatments. The
experiment was done at the Cedar Creek Natural His-
tory Area, Anoka and Isanti Counties, Minnesota,
USA. Overall, 372 plots (2 3 2 m) were established
in 1997, of which 296 are used in the BioCON exper-
iment. The data used here were collected in August
1999. Although many measures of ecosystem func-
tioning were made, I restricted my analyses to percent
cover, a frequently used, nondestructive, proxy mea-
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TABLE 2. Plant species in the 16-species BioCON grassland plots that were used in this study.

Functional
group Plant species Common name

C4 Andropogon gerardii
Bouteloua gracilis
Schizachyrium scoparium
Sorghastrum nutans

big bluestem
blue grama
little bluestem
Indian grass

C3 Agropyron repens
Bromus inermis
Koeleria cristata
Poa pratensis

quack grass
smooth brome
Junegrass
Kentucky bluegrass

Forbs Achillea millefolium
Anemone cylindrica
Asclepias tuberosa
Solidago rigida

yarrow
candle anemone
butterfly milkweed
rigid goldenrod

Legumes Amorpha canescens
Lespedeza capitata
Lupinus perennis
Petalostemum villosum

lead plant
roundhead bush clover
lupine
silky prairie clover

FIG. 3. Use of PCA in disentangling F and S effects for
the BioCON experiment. PCAI4,16 5 principal component axis
I for F 5 4 and S 5 16. PCAII4,16 is similarly defined. Points
indicate possible treatments.

sure of relative aboveground plant biomass production.
Percent cover was estimated evaluating percent cover
of each species in 100 3 50 cm frames placed in iden-
tical positions in each plot, one frame per plot.

The ground was cleared and treated with methyl bro-
mide to remove the seedbank and weeds. Plots were
sprayed with a filtered slurry to reintroduce microbes,
and seeded to establish the diversity treatments. The
pool of plant species and their functional group des-
ignations are listed in Table 2. S varied from 0, 1, 4,
9, and 16 species, while F varied from 0, 1, 2, 3, to 4
groups. I restricted analyses to those plots in which S
. 0 and F . 0.

In the first analysis, I considered the original design
and the realized design, and compared diversity in
terms of relative abundance using the Shannon index
(Shannon and Weaver 1949, Magurran 1988) applied
to percent cover data. In the second analysis, I ex-
amined plots under ambient conditions to determine
how percent cover responded to variation in F and S
using both conventional methods and the PC method
described above.

Results

For the BioCON example here, the original design,
following the ln2(S) convention, with Smin 5 1, Smax 5
16, Fmin 5 1, and Fmax 5 4, produces 11 possible com-
munity types (Fig. 3).

By comparison, only seven combinations were used
in the actual experimental design, but this design still
yields an rF,S of 0.661 (Fig. 4), which is only slightly
higher than the value for the full design. Ordinarily, 1,
2, 4, 8, and 16 species would be used, but the re-
searchers selected a subset of these possible levels,
using 1, 4, 9, and 16 species instead. This closely fol-
lows the log2(S) convention. The actual design also
deviated slightly from the S/F 5 integer convention in
that S 5 9 does not yield an integer when divided by
F 5 4, but densities of seeds were still apportioned
equally to ensure even distribution of functional
groups. Because the levels of S (1, 4, 9, 16) are rela-
tively evenly spread across the range, I did not employ
log2(S) transformations in further analyses.

On average, the actual BioCON design is very close
to a full, traditional design, even though there are fewer
treatments (Table 3). The smaller number of treatments
did result in more species- and functionally rich plots
(fewer levels for the same range) and slightly less var-
iation in S and F (more homogeneity), but these dif-
ferences are small (Table 3), indicating that the actual
design has relatively the same power as a full design.

Local extinction and dominance invariably reduces
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FIG. 4. Results from the example (BioCON) study. Panel
(a) shows actual treatments used; (b) shows actual combi-
nations of F (y-axis) and S (x-axis) found in plots based on
percent cover quadrats, and (c) shows relationship between
F and S where the Shannon formula was applied to percent
cover quadrats to estimate diversity based on relative abun-
dance actually observed in the plot.

the diversity of a plot from its initial diversity. While
both F and S may not be affected, determining the
extent to which they remain unaffected by succession
is difficult to determine as it would require a thorough
search of every plot. Percent cover quadrats, however,
revealed that the pattern created by the log2(S ) con-
vention alters substantially if extreme rarity is treated
as equivalent to extinction.

The actual F 3 S space being explored by the ex-
perimental system contains many replicates that may
have deviated from the ln2(S) and S/F 5 integer con-
ventions due to local extinction or rarity. Because per-
cent cover estimates are not capable of confirming the
presence or absence of extremely rare plants, it is not
certain how far from the original design the replicates
deviated, but such deviations do not change the nature
of the experiment, only the extent of the response sur-
face being explored. The actual experiment may have
covered the set of possible combinations of F and S
more thoroughly by deviating from the two conven-
tions. Unlike the possible reduced range of S (Smax ob-
served 5 14), the range of F values explored was un-
affected because at least one individual of each func-
tional group was found in replicates where they were
planted.

The Shannon index, which weighs presence by abun-
dance, shows a tight distribution around a positive,
nearly linear association between F and S (Fig. 4).
Clearly, actual taxonomic diversity (S) is highly cor-
related with functional diversity (F ) (r 5 0.949) in this
experimental system if we consider relative abundance.
Applying PCA to the Shannon index of F and S as
determined by percent cover, PCAI describes 97.446%
and PCAII describes 2.554% of the total variance, in-
dicating that there is even less power in this experiment
to separate F and S effects if we consider relative abun-
dance.

Different methods of conventional parametric anal-
yses yield different results (Table 4). Total percent cov-
er, the response variable, shows a strong positive re-
lationship with all measures of biodiversity (F, S, and
PCAI) (Fig. 5). Of particular note is the nearly identical
pattern with either F or S, confirming strong collin-
earity. The imbalance of the design did not permit a
full multifactorial ANOVA. Separate tests using gen-
eral linear models revealed no significant main effects
(F and S ), no significant interaction (F 3 S ), and no
significance if either is treated as a covariate (Table 4).

Multiple regression did yield a significant regression
(Table 4), with F proving to be a significant (P , 0.05)
contributor to the regression. One might conclude from
this that functional richness is more important, but the
collinearity between these two variables does not allow
for unambiguous interpretation. In contrast, PCAI
showed a highly significant (P , 0.001) contribution
to the regression. Because PCAI describes the corre-
lation between F and S, PCAII provides information
on the relationship between functioning that is unaf-
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TABLE 3. Summary statistics and principal component analysis (PCA) results for the full
BioCON and actual BioCON design.

a) Summary statistics

F̄ (sF )log2 log2
S̄ (sS )log2 log2

S̄(s)

Levels

S F rF,S

Full
Actual

2.46 (1.21)
3.00 (1.16)

2.09 (1.14)
···

5.55 (4.28)
6.71 (5.02)

1, 2, 4, 8, 16
1, 4, 9, 16

1, 2, 3, 4
1, 2, 3, 4

0.66
0.66

b) Principal component analysis

PCI PCII PCI PCII

Variance explained (%) 84.61 15.39 83.04 16.96

Eigenvector
F
S

0.71
0.71

0.71
20.71

0.71
0.71

0.71
20.71

Component loading
F
S

0.92
0.92

0.39
20.39

0.91
0.91

0.41
20.41

Notes: The first principal component (PCI) and second principal component (PCII) 5 prin-
cipal components 1 and 2, respectively. Note that PCA used log2(S) for the analysis of the full
design, but S for the actual design due to the approximate log spread of levels. 5F̄ (sF )log2 log2

average and standard deviation of F, log2 transformed. 5 average and standardS̄ (sS )log2 log2

deviation of S, log2 transformed. S̄(s) 5 average and standard deviation of untransformed S.
rF,S 5 correlation between F and S. This table shows that the full design and actual design are
quite similar in design properties.

TABLE 4. Comparison of statistical methods that can be applied to results from a biodiversity
ecosystem functioning.

Method Model term or effect df P

ANOVA (GLM) F (category)
S (category)
F 3 S (interaction)

2, 67
2, 67
2, 67

0.943
0.805
0.855

Multiple regression F
S
R2

2, 71 0.038
0.599
0.239

ANCOVAI F (category)
S (covariate)

3, 69
1, 69

0.195
0.529

ANCOVAII S (category)
F (covariate)

3, 69
1, 69

0.787
0.865

PCA-multiple regression PCAI
PCAII
R2

2, 71 ,0.001
0.448
0.239

Notes: Only ambient condition plots were used (N 5 74) in which S . 0 and F . 0. The
response variable is percent vegetation cover. P 5 probability value where P , 0.05 is con-
sidered significant (boldface type).

fected by F and S. Only 1.3% of the variance in percent
cover is explained by PCAII. A positive slope (linear
regression, coefficient of F 5 4.91, 1 SE 5 3.49, lower
95% CI 5 22.05, upper 95% CI 5 11.87, R2 5 0.01,
P 5 0.16), suggests a trend in increasing production
being partly associated with independent F effects, but
lack of significance (P . 0.05), low R2, and the fact
that the 95% confidence interval for the coefficient in-
cludes 0 does not support this hypothesis.

DISCUSSION

This study shows clearly that for any experiment
examining H 5 f(F, S), rF,S is unavoidable. In fact, such
experiments are particularly poor at detecting possible

independent F and S effects. While larger experiments
have lower correlations (Table 1, Fig. 2), even at 256
species, PCAII indicates that only 33.11% of the var-
iance in the experimental design can be used for de-
termining independent F and S effects. While this is a
gain of 17.73% over an experiment using 32 species,
the increase from 15 treatments to 67 indicates that
considerable effort may be necessary to make small
gains in experimental power. Thus, conclusions that
functional group richness matters more than species
richness based on the limited set of current experiments
are not strongly supported, since they lack the power
to disentangle the two factors. If resources for con-
ducting research are limited and the main goal is to
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FIG. 5. Plots of ecosystem functioning (percent cover) vs. F and S, and of percent cover vs. PCAI and PCAII for the
BioCON example. The top plots show relationships between F and S (right and left vertical axes, respectively) and PCAI
and PCAII. Note the strong correlation identified by PCAI. The middle plots show percent cover in relation to F and S. The
bottom plots show percent cover in relation to PCAI and PCAII. Lines in middle and bottom plots represent best-fit log-
linear relationships.

determine the association between biodiversity and
ecosystem functioning, then investing in the full ex-
periment may be unwise.

If resources are not a limiting factor and one is in-
terested in disentangling the relative impacts of F and
S on H, however, then a complete, factorial experi-
mental design is desirable. The response surface, how-
ever, is potentially enormous, requiring large numbers
of treatments even if following the log2(S) and S/F 5
integer conventions for subsampling the set of F and
S combinations. Given the importance of the issues
being addressed by such studies, these daunting re-
quirements should not (and have not) dissuaded ex-
perimental ecologists from conducting such studies.
Applying conventional, parametric analytical methods
to the results, however, is problematic if the goal is to

disentangle F and S effects. The PCA solution provided
here provides means for gaining some insights into
relative impacts of both covarying F and S and inde-
pendent F and S effects.

There are three basic steps involved in this approach.
First, one must design the experiment, which involves
determining the appropriate Smax, Smin, Fmax, and Fmin for
the ecosystem under investigation, and consider wheth-
er the log2(S) and S/F 5 integer conventions will be
adopted. This is a critical step since results are sensitive
to which species are selected and to what scheme for
functional group classification is adopted. Equally im-
portant, and potentially problematic, is the fact that
functional group classification schemes are often op-
timal for single ecosystem functions (dependent vari-
ables), thereby necessitating the use of different



October 2002 2933FUNCTIONAL VS. TAXONOMIC DIVERSITY

schemes for widely differing ecosystem functions.
Here, an optimal functional classification scheme refers
to one in which the trait-group distances among species
within groups is smaller than the distances among func-
tional groups (e.g., Wardle 2001). Because trait groups
used in functional classification schemes are generally
associated with the dependent ecosystem function un-
der investigation (Chapin et al. 1996), considerable
caution is necessary when conducting analyses of two
or more dependent ecosystem function variables, but
using only one functional classification scheme.

The second step involves analyzing the experimental
design using PCA as done above. The third step in-
volves measuring H and using it as a dependent variable
in a regression analysis in which PCAI and PCAII are
treated as the independent variables (rather than against
F and S ). This approach may be extended to multiple
dimensions. For example, if an experiment were to ma-
nipulate both trophic and intratrophic functional
groups, a third axis may represent a number of trophic
levels. Manipulations of intertrophic functional groups
have similar limitations as manipulations of intratroph-
ic groups. For example, the number of intertrophic
groups must be equal to or less than the number of
intratrophic groups. The resulting statistical procedure
would be three regression analyses using PCAI, PCAII,
and PCAIII as independent variables. PCAI, in this
case, would represent the multivariate correlation
among species, intratrophic, and intertrophic functional
richness in the experimental design. Interpretation of
PCAII and PCAIII would depend on factor loadings,
but would represent the diversity effects independent
of the multivariate correlation among the components
of diversity.

One potentially valuable use of this method may be
in designing simpler biodiversity–ecosystem function-
ing experiments. This analysis can be conducted before
the experiment to aid in decisions concerning the mag-
nitude and scope of the experiment. If the purpose of
the experiment is to determine the relationship between
biodiversity and ecosystem functioning, then one can
use PCAI to determine what treatments to use. For a
set of values of F, ranging from Smin to Smax, an ith value
of F in the experimental set, we can determine Si using
the formula for PCAI (Eq. 2). Using this formula, for
each level of functional (Fi) groups from 1 to Fmax, one
could select the number of species at or near the value
of Si on PCAI. For example, if Smin 5 1, Smax 5 32,
Fmin 5 1, and Fmax 5 4, there are 15 S 3 F treatment
levels following the log2(S ) convention. If we replicate
each one at 10 replicates per level, this yields 150
replicates. PCAI for this design, however, indicates that
the set of treatments where S ø 2F (effectively four
points), covers the range of biodiversity in this exper-
imental design. This would allow reduction of the ex-
periment to either four treatments with 10 replicates
for each treatment (N 5 40), or, if resources permit,
;150 replicates: four treatments with 37 replicates

each. The former provides for a tractable experiment
for determining a biodiversity effect as the larger de-
sign, whereas the latter allows for greater statistical
power and greater ability to explore the realm of spe-
cies combinations, which is often severely undersam-
pled. For example, the number of possible unique treat-
ments equals 6.12 3 108 for 32 species, even if fol-
lowing the log2(S ) convention.

There are several cautions one must still follow.
First, it is important to recall that defining functional
diversity is problematic (Gitay and Noble 1997). So
long as functional groups are defined operationally or
qualitatively, interpretation of findings is necessarily
sensitive to these definitions. Any change in the defi-
nition that changes either the number of functional
groups or the classification of species can change the
outcome. Second, variance in these experiments is still
heterogeneous, which makes using regression models
suspect. One can solve this by dividing each level by
its standard deviation, but such a transformation is dif-
ficult to interpret since it effectively makes H/sF,S 5
f(F, S ).

There are also several issues concerning functional
groups that intratrophic S 3 F experiments and this
method cannot address. While the functioning of an
ecosystem is ultimately related to the functional prop-
erties of the species within its community, ecosystem
functioning is likely to be associated with F or even
just the identity of a species (where identity refers to
the specific contribution of a species to ecosystem func-
tioning) (Hooper and Vitousek 1997, Tilman et al.
1997a, Symstad 2000, Hooper et al., in press), but there
are several issues that make it difficult to adopt this
simple principle. First, the issue of identifying the ap-
propriate mechanism underlying biodiversity effects
(e.g., Huston 1997, Loreau and Hector 2001) is the
same for functional diversity as it is for taxonomic
diversity. Multiple functional groups may act through
sampling, niche complementarity, facilitation, or pos-
sibly other mechanisms in similar ways that multiple
species create associations between biodiversity and
ecosystem functioning. Second, intertrophic functional
richness may create relationships between biodiversity
and functioning that are stronger than intratrophic func-
tional diversity (Naeem and Li 1998, Mulder et al.
1999, Hulot et al. 2000, Naeem et al. 2000, Loreau
2001). Third, the predictability or variability of a sys-
tem may be dependent on the number of redundant
species or number of species within a functional group
(McGrady-Steed et al. 1997, Naeem and Li 1997, Doak
et al. 1998, Naeem 1998, Tilman et al. 1998, Yachi and
Loreau 1999). Thus, even if the central tendency or
mean levels of ecosystem functioning are insensitive
to variation in taxonomic diversity, variability of func-
tioning might be sensitive to S or S/F. Fourth, from a
practical standpoint, in comparison to taxonomic meth-
ods, neither the knowledge of species’ functional iden-
tities nor functional classification systems are devel-
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oped sufficiently to adequately quantify functional bio-
diversity, though progress is being made (Hooper et
al., in press). Thus, while plant experiments such as
those by Hooper and Vitousek (1997), Tilman et al.
(1997), Hector et al. (2000), Engelhardt and Ritchie
(2001), Symstad and Tilman (2001), and Reich et al.
(2001a) provide valuable insights into plant functional
diversity and ecosystem functioning, they shed little
light into diversity across multiple trophic groups or
diversity effects on system variability, a possibility that
aquatic microcosm experiments have shed some light
on (Petchey et al., in press).

Of these many conceptual issues surrounding the rel-
ative roles of taxonomic and functional diversity in
ecosystem functioning, the PCA method reported here
primarily solves the non-orthogonality of the F and S
variables. I suggest, however, that in many instances
the relative contributions of F and S is not what mo-
tivates research addressing the ecosystem consequenc-
es of declining biodiversity. Taxonomic and functional
diversity are inextricably linked in such experiments;
thus there may be little to be gained in attempting to
understand what the independent effects of F and S
might be by this method. What is important, however,
is that direct manipulations of biodiversity manipulate
F and S in a balanced way, and the PCA method pro-
vides guidelines for doing this. In the interest of time
and limited resources, experiments that explore the di-
agonal of the F 3 S matrix (identified by PCAI) may
provide a more effective means of gaining insight into
the relationship between biodiversity and ecosystem
functioning. The reduction in the numbers of treatments
resulting from this approach may be particularly useful
when attempting to expand biodiversity studies to mul-
titrophic levels where reduction in the number of treat-
ments is necessary to make such experiments tractable.
Such reductions in experimental design may also fa-
cilitate identifying the underlying mechanisms of bio-
diversity impacts on ecosystem functioning (e.g., sam-
pling, niche complementarity, and facilitation) by per-
mitting greater allocation of resources to replication of
species combinations, one of the biggest challenges to
biodiversity-functioning research (Loreau et al. 2001).
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