Plant Production and Soil Microorganisms in Late-Successional Ecosystems:
A Continental-Scale Study

Donald R. Zak; David Tilman; Robert R. Parmenter; Charles W. Rice; Frederick M.
Fisher; James Vose; Daniel Milchunas; C. Wayne Martin

Stable URL:
http://links.jstor.org/sici?sici=0012-9658%28199412%2975%3A8%3C2333%3APPASMI%3E2.0.CO%3B2-P

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Ecology is published by The Ecological Society of America. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/esa.html.

Ecology
©1994 The Ecological Society of America

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Fri Feb 21 15:02:49 2003
PLANT PRODUCTION AND SOIL MICROORGANISMS IN
LATE-SUCCESSIONAL ECOSYSTEMS:
A CONTINENTAL-SCALE STUDY

DONALD R. ZAK
School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USA

DAVID TILMAN
Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota 55108 USA

ROBERT R. PARMENTER
Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA

CHARLES W. RICE
Department of Agronomy, Kansas State University, Manhattan, Kansas 66506 USA

FREDERICK M. FISHER
Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003 USA

JAMES VOSE
USDA Forest Service, Coweeta Hydrologic Laboratory, Otto, North Carolina 28763 USA

DANIEL MILCHunas
Range Science Department, Colorado State University, Fort Collins, Colorado 80523 USA

C. WAYNE MARTIN
USDA Forest Service, Hubbard Brook Experimental Forest, Campton, New Hampshire 03223 USA

Abstract. Annual C inputs from plant production in terrestrial ecosystems only meet the
maintenance energy requirements of soil microorganisms, allowing for little or no net annual
increase in their biomass. Because microbial growth within soil is limited by C availability, we
reasoned that plant production should, in part, control the biomass of soil microorganisms. We
also reasoned that soil texture should further modify the influence of plant production on soil
C availability because fine-textured soils typically support more microbial biomass than coarse-
textured soils. To test these ideas, we quantified the relationship between aboveground net
primary production (ANPP) and soil microbial biomass in late-successional ecosystems dis-
tributed along a continent-wide gradient in North America. We also measured labile pools of
C and N within the soil because they represent potential substrate for microbial activity. Eco-
systems ranged from a Douglas-fir forest in the western United States to the grasslands of the
mid-continent to the hardwood forests in the eastern U.S. Estimates of ANPP obtained from
the literature ranged from 82 to 1460 g · m⁻² · yr⁻¹. Microbial biomass C and N were estimated
by the fumigation–incubation technique. Labile soil pools of C and N and first-order rate
constants for microbial respiration and net N mineralization were estimated using a long-term
(32 wk) laboratory incubation. Regression analyses were used to relate ANPP and soil texture
with microbial biomass and labile soil C and N pools.

Microbial biomass carbon ranged from 2 g/m² in the desert grassland to 134 g/m² in the
tallgrass prairie; microbial N displayed a similar trend among ecosystems. Labile C pools, derived
from a first-order rate equation, ranged from 115 g/m² in the desert grassland to 491 g/m² in
the southern hardwood forest. First-order rate constants for microbial respiration (k) fell within
a narrow range of values (0.180 to 0.357 wk⁻¹), suggesting that labile C pools were chemically
similar among this diverse set of ecosystems. Potential N mineralization rates over the 32-wk
incubation were linear in most ecosystems with first-order responses only in the alpine
tundra, tallgrass prairie, and forests. Microbial biomass C displayed a positive, linear relationship
with ANPP (r² = 0.51), but was not significantly related to soil texture. Labile C also was linearly
related to ANPP (r² = 0.32) and to soil texture (r² = 0.33). Results indicate that microbial
biomass and labile organic matter pools change predictably across broad gradients of ANPP,
supporting the idea that microbial growth in soil is constrained by C availability.

Key words: aboveground net primary production; carbon and nitrogen cycles; heterotrophic metabolism;
labile organic matter; microbial respiration; net N mineralization; soil microbial biomass; soil microorganisms;
soil texture; substrate-use efficiency.

1 Manuscript received 10 May 1993; revised 1 December 1993; accepted 9 March 1994.
INTRODUCTION

On a global basis, soil microorganisms are thought to contain 1.5% of the C and 3.0% of the N stored within terrestrial ecosystems (Wardle 1992). Although these proportions are small, heterotrophic activity in soil is responsible for the mineralization of soil organic matter, which releases CO₂ to the atmosphere and NH₄⁺ into soil solution. Recent attention has focused on these processes because climate change has the potential to alter the pattern in which C and N are cycled and stored within terrestrial ecosystems. The extent to which climate change may modify C and N cycles is, in part, contingent on the physiological response of soil microorganisms. However, few studies have systematically investigated the dynamics of soil microorganisms along broad spatial gradients of temperature, precipitation, and plant production (Myrold et al. 1989), controlling factors likely to be altered by changes in global climate (Melillo et al. 1993).

Because climate change could alter patterns of plant production at large spatial scales, it also may influence C inputs to soil and the amount of energy available for heterotrophic metabolism. Several analyses suggest that microbial growth in soil is constrained by C inputs from plant litter production and the efficiency at which organic substrates are used for biosynthesis (Babiuk and Paul 1970, Gray and Williams 1971). Smith and Paul (1990), for example, compared the maintenance requirements of soil microorganisms to plant C inputs over a range of ecosystems and concluded that the amount of C annually required to maintain soil microorganisms equaled that contained in the above- and belowground input of plant litter. Their analysis suggests that all labile C from plant litter and that stored in mineral soil should be metabolized on an annual basis, allowing for little or no net annual growth of soil microorganisms. If C inputs from plant production are only sufficient to maintain soil microorganisms, then annual rates of plant litter production should be well correlated with the microbial biomass content of soil. This relationship should be well expressed in late-successional ecosystems in which net primary production (NPP) is balanced by rates of organic matter decomposition (Rodin and Bazilevich 1967, Odum 1969, Vitousek and Reiners 1975, Bormann and Likens 1979). In these situations, NPP should be equivalent to the above- and belowground production of plant litter, which, in turn, provides the primary substrate for heterotrophic metabolism in soil.

Although numerous studies cite soil C availability as an important regulator of microbial metabolism, isolating its influence from that of soil texture is difficult. In the shortgrass prairie region of the central United States, for example, fine-textured soils typically contain greater quantities of organic matter and microbial biomass than coarse-textured soils (Schimel 1986, Burke 1989). Clay-sized particles are thought to protect organic matter through adsorption and aggregation (Jenkinson 1977, Paul 1984), shelter soil microorganisms from predation (Roper and Marshall 1974, Elliott et al. 1980), and increase substrate-use efficiency (Martin et al. 1976). As a consequence, plant litter production and soil texture should function in concert to influence the microbial biomass content of soil.

North America is traversed by a broad climatic gradient that gives rise to marked differences in plant production and the rate at which organic matter and associated nutrients are cycled within terrestrial ecosystems. Changes in plant production along such a gradient should directly influence organic matter additions to the soil and the amount of energy available to meet the maintenance requirements of soil microorganisms. Other things being equal (i.e., NPP), fine-textured soils should support more microbial biomass than coarse-textured soils. Our primary objectives were to determine: (a) how the biomass and substrate-use efficiency of soil microorganisms change along a continental-scale gradient of plant production and (b) how soil texture modifies those relationships. As a secondary objective we investigated changes in labile organic matter pools (i.e., C and N), because they represent substrate for heterotrophic metabolism and may be the pool of organic matter most influenced by climate change. We have assumed that late-successional ecosystems are near or at steady state with respect to C storage, and aboveground net primary production (ANPP) is directly proportional to total net primary production (Nadelhoffer et al. 1985).

METHODS

Study sites and soil sampling

We studied a series of late-successional ecosystems representative of the broad vegetation patterns extending across the North American continent (Table 1). Most belong to the Long-Term Ecological Research (LTER) network, with the exception of the Manistee site in northwestern Lower Michigan. The ecosystems ranged from Douglas-fir forest in the western U.S. to the grasslands of the mid-continent to the eastern deciduous forests (Table 1). Many features of this gradient have been described, including spatial patterns of climate and ANPP (Whittaker 1975, Chabot and Mooney 1985, Greenland 1987). We studied sites for which published estimates of ANPP were available or where measurements were currently being undertaken (Table 2). Estimates were not available for the piñon-juniper forest in New Mexico and the Lake States northern hardwood forest. In these cases, we used values from sites of similar species composition in the same geographic region (Table 2). Aboveground net primary production ranged from 82 g m⁻² yr⁻¹ in the short-
Table 1. Summary of climatic characteristics for ten locations distributed across North America. Long-term (30-yr) mean monthly temperature and precipitation for Sevilleta, Manistee, and Hubbard Brook were gathered from the nearest weather station, and potential and actual evapotranspiration were calculated following Willmott (1977); long-term (30-yr) climatic variables for the remaining ecosystems were summarized from Greenland (1987).

<table>
<thead>
<tr>
<th>Location</th>
<th>Ecosystem</th>
<th>Latitude (N)</th>
<th>Longitude (W)</th>
<th>Elevation (m)</th>
<th>Mean annual temp. (°C)</th>
<th>Mean annual precip. (mm)</th>
<th>Evapotranspiration (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. J. Andrews (Oregon)</td>
<td>Old-growth Douglas-fir</td>
<td>44°14'</td>
<td>122°11'</td>
<td>1146</td>
<td>8.6</td>
<td>2290</td>
<td>593 552</td>
</tr>
<tr>
<td>Sevilleta (New Mexico)</td>
<td>Pinyon-Juniper</td>
<td>34°36'</td>
<td>106°69'</td>
<td>1975</td>
<td>10.5</td>
<td>329 696</td>
<td>311</td>
</tr>
<tr>
<td>Jornada (New Mexico)</td>
<td>Desert grassland</td>
<td>34°37'</td>
<td>106°54'</td>
<td>1596</td>
<td>13.0</td>
<td>222 735</td>
<td>222</td>
</tr>
<tr>
<td>Niwot Ridge (Colorado)</td>
<td>Desert shrubland</td>
<td>32°30'</td>
<td>106°45'</td>
<td>1380</td>
<td>14.6</td>
<td>231 797</td>
<td>231</td>
</tr>
<tr>
<td>Central Plains (Colorado)</td>
<td>Shortgrass steppe</td>
<td>40°03'</td>
<td>105°37'</td>
<td>3500</td>
<td>3.7</td>
<td>930 306 257</td>
<td>257</td>
</tr>
<tr>
<td>Konza Prairie (Kansas)</td>
<td>Tallgrass prairie</td>
<td>40°48'</td>
<td>104°46'</td>
<td>1647</td>
<td>8.7</td>
<td>309 605</td>
<td>299</td>
</tr>
<tr>
<td>Cedar Creek (Minnesota)</td>
<td>Tallgrass prairie</td>
<td>39°05'</td>
<td>96°35'</td>
<td>365</td>
<td>12.8</td>
<td>835 790</td>
<td>736</td>
</tr>
<tr>
<td>Manistee (Michigan)</td>
<td>Upland pin oak forest</td>
<td>45°35'</td>
<td>93°12'</td>
<td>285</td>
<td>5.5</td>
<td>726 597</td>
<td>586</td>
</tr>
<tr>
<td>Coweeta (North Carolina)</td>
<td>Northern hardwood forest</td>
<td>44°48'</td>
<td>85°48'</td>
<td>325</td>
<td>7.2</td>
<td>810 576</td>
<td>575</td>
</tr>
<tr>
<td>Hubbard Brook (New Hampshire)</td>
<td>Northern hardwood forest</td>
<td>35°00'</td>
<td>83°30'</td>
<td>808</td>
<td>12.5</td>
<td>1847 702</td>
<td>702</td>
</tr>
</tbody>
</table>

grasses steppe to 1460 g·m⁻²·yr⁻¹ in the southern hardwood forest (Table 2).

In each ecosystem, we collected soil samples from 10 points systematically located along two 20-m transects. One transect was established by randomly locating a point to serve as a center and then measuring 10 m north and south from that point. A parallel 20-m transect was located 10 m to the west. Two soil samples were collected at each of five equally spaced intervals along each transect. Samples consisted of a 3.8-cm-diameter core that extended from immediately below the loose litter to a depth of 10 cm. Cores collected at each sample point were placed in a polyethylene bag, packed on ice, and shipped overnight to the University of Michigan. All soil samples were analyzed within 24 h of field collection.

Changes in edaphic properties along topographic gradients influence rates of C and N cycling in arid grassland ecosystems (Schimel et al. 1985b). Therefore, we located transects at top-, mid-, and bottom-slope positions in the rolling topography of the shortgrass steppe (Central Plains) and tallgrass prairie (Konza). Each transect was oriented perpendicular to the slope. Values for the shortgrass steppe and tallgrass prairie (Konza) are the mean of top-, mid-, and bottom-slope positions. Soil organic matter content and N availability also vary widely in semi-arid shrub-dominated ecosystems due to localized accumulations of organic matter beneath plant canopies (Charley and West 1977, Parker et al. 1984, Fisher et al. 1987, Burke 1989). To account for this source of variation, we stratified our sampling in the desert shrubland by collecting soil at each sample point and beneath the nearest shrub. Following soil sampling, visual estimates of shrub coverage were obtained for the entire transect area. Analytical values for soil collected beneath and between shrubs were weighted by their respective coverage to obtain areal estimates. Soil samples were collected from July to August 1989.

Soil analyses

The composite soil samples were weighed and thoroughly mixed. A 10-g subsample from each bag was dried at 105°C to determine soil water content. Soil bulk density was calculated as the ratio of oven-dried soil to combined core volume. Air-dried soil was used for analyses of texture, pH, organic C, and total N, whereas fresh field-moist soil was used to assay microbial biomass, microbial respiration, and net N mineralization. Soil texture was measured using the hydrometer method (Gee and Bauder 1986), and pH was measured in a 1:1 soil:deionized water paste. Soil organic C and total N were determined using a Carlo-Erba NA 1500 Analyzer. Carbonates in the Jornada and Sevilleta soils were removed with excess 5% H₂SO₃ (Nelson and Sommers 1982) prior to the analyses.

Soil microbial biomass was measured using the CHCl₃-fumigation-incubation procedure (Jenkinson and Powlson 1976, Voroney and Paul 1984). A 20-g soil subsample was fumigated for 18 h with CH₃CH₂OH-free CHCl₃ in a humid vacuum desiccator. A second 20-g subsample (a control) was treated in a similar manner, but CHCl₃ was not placed inside the desiccator. Following the fumigation, samples were inoculated with 0.3 g of fresh soil, placed in separate airtight glass jars, and incubated for 10 d at room temperature. A Tracor 540 gas chromatograph (Tracor Instruments, Austin, Texas, USA) equipped with a thermal conductivity detector was used to determine CO₂.
TABLE 2. Aboveground net primary production (ANPP) and dominant plant species for 13 ecosystems distributed along a climatic gradient in North America.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ecosystem</th>
<th>ANPP (g·m⁻²·yr⁻¹)</th>
<th>Reference</th>
<th>Dominant species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sevilleta</td>
<td>Pinyon-Juniper</td>
<td>212</td>
<td>Grier et al. 1992</td>
<td>Pinus edulis Juniperus monosperma Bouteloua hirsuta</td>
</tr>
<tr>
<td></td>
<td>Desert grassland</td>
<td>185</td>
<td>D. Moore, 1993 unpublished data</td>
<td>Bouteloua eriopoda Bouteloua gracilis Gutierrezia sarothrae</td>
</tr>
<tr>
<td>Jornada</td>
<td>Desert grassland</td>
<td>225</td>
<td>W. Whitford, 1993 unpublished data</td>
<td>Bouteloua eriopoda Gutierrezia sarothrae Yucca elata</td>
</tr>
<tr>
<td></td>
<td>Desert shrubland</td>
<td>171</td>
<td>W. Whitford, 1993 unpublished data</td>
<td>Larrea tridentata Panicum obtusum Prosopis glandulosa</td>
</tr>
<tr>
<td>Niwot Ridge</td>
<td>Alpine tundra</td>
<td>200</td>
<td>M. Walker, 1993 unpublished data</td>
<td>Kobresia myosuroides Silene acaulis Silbaldia procumbins</td>
</tr>
<tr>
<td>Central Plains</td>
<td>Shortgrass steppe</td>
<td>82</td>
<td>D. Milchunas, 1993 unpublished data</td>
<td>Bouteloua gracilis Sphaeralcea coccinea Opuntia polystachia</td>
</tr>
<tr>
<td>Konza Prairie</td>
<td>Tallgrass prairie</td>
<td>470</td>
<td>T. Scastedt, 1993 unpublished data</td>
<td>Andropogon gerardii Sorghastrum nutans Schizachyrium scoparium</td>
</tr>
<tr>
<td>Cedar Creek</td>
<td>Tallgrass prairie</td>
<td>93</td>
<td>Ovington et al. 1963, Reiners 1972</td>
<td>Schizachyrium scoparium Artemisia ludoviciana Polygonum convolvulus Quercus elipsoidalis Corlylus americana Carex muhlenbergii</td>
</tr>
<tr>
<td></td>
<td>Upland pin oak forest</td>
<td>855</td>
<td>Ovington et al. 1963, Reiners 1972</td>
<td></td>
</tr>
<tr>
<td>Manistee</td>
<td>Northern hardwood forest</td>
<td>950</td>
<td>Pastor et al. 1984</td>
<td>Acer saccharum Tilia americana Ostrya virginiana</td>
</tr>
<tr>
<td>Coweeta</td>
<td>Southern hardwood forest</td>
<td>1460</td>
<td>Monk and Day 1988</td>
<td>Liriodendron tulipifera Quercus rubra Quercus coccinea</td>
</tr>
<tr>
<td>Hubbard Brook</td>
<td>Northern hardwood forest</td>
<td>792</td>
<td>Marks 1974</td>
<td>Acer saccharum Betula alleghaniensis Fagus grandifolia</td>
</tr>
</tbody>
</table>

Following the CO₂ analysis, control and fumigated samples were extracted with a 2 mol/L KCl aqueous solution. Ammonium-N and NO₃⁻-N concentrations in filtrates were determined colorimetrically using an Alp kem RFA 300 (Alp kem, Clackamas, Oregon, USA). Microbial biomass C was calculated by dividing the flux of CO₂-C from fumigated samples by 0.41 (Voroney and Paul 1984). The N content of microbial biomass was calculated by dividing the flux of N (fumigated minus control) by a correction factor (kₙ), determined from the equation of Voroney and Paul (1984): \(kₙ = -0.014(C/Nₐ) + 0.39 \), where \(Cₐ \) and \(Nₐ \) are the fluxes of C and N from fumigated samples, respectively.

Labile pools of C and N and rate constants for microbial respiration and net N mineralization were quantified using a long-term incubation technique (Nadelhoffer 1990). Thirty-gram soil subsamples were incubated in Falcon Filtration units (Model 7102, Becton Dickinson Labware, Lincoln Park, New Jersey, USA) that were modified by sealing each port with a rubber septum and replacing the original nitrocellulose filter with a glass-fiber filter (Whatman GF-A). Filtration units containing soil were made airtight by sealing the lid and seams with silicone rubber. After the silicone rubber had cured, 5 mL of air were injected, and pressure was measured using a transducer (Parkin et al. 1984) to ensure that each had an airtight seal. The septa were removed, and inorganic N was extracted from the soil with 100 mL of 0.01 mol/L CaCl₂ solution; extractions were followed by 20 mL of minus-N nutrient solution (Stanford and Smith 1972). The soil was
brought to field capacity (−0.03 MPa) using a handheld vacuum pump, and the excess minus-N nutrient solution was discarded. The filtration units were then flushed with five air-space volumes of CO₂-free air and sealed airtight. An initial gas sample (0.4 mL) was removed and analyzed for CO₂ as described above. The filtration units were then incubated at 35°C in the dark for 32 wk. Additional gas samples were collected after week 1, after week 2, and at 2-wk intervals thereafter. Following each gas sampling, each filtration unit was flushed with five air-space volumes of CO₂-free air to replenish O₂ that had been consumed by microbial respiration. Inorganic N was extracted and minus-N nutrient solution was added at 1, 2, 4, 8, 16, and 32 wk. Each extraction was followed by the addition of CO₂-free air, and the filtration units were again sealed airtight. Carbon dioxide within the filtration units never exceeded 20 uL/mL (2%, vol./vol.).

Product accumulation curves for CO₂-C and inorganic-N were constructed for each filtration unit, and data were fitted to a first-order \(y = a(1 - e^{-kt}) \) equation. The equation estimates the pool of labile C or N (a) that could be potentially respired or mineralized, respectively, and the rate constant (k) for each process; \(t \) in the equation is time in weeks. Because soil temperature and moisture potential during the incubation are favorable for microbial activity, these processes should be limited by substrate (i.e., labile C or N) availability and not by environmental factors. We have assumed that the incubations estimate the pool of labile C and N contained in soil organic matter.

The relationship between basal respiration rate and microbial C content of soil (i.e., specific respiration rate) has been used to assess the substrate-use efficiency of microbial biomass; microorganisms efficient at converting substrate (i.e., C) into biomass have low specific respiration rates (Anderson and Domsch 1989, 1992). We used information from the long-term incubations to gain insight into changes in substrate-use efficiency of soil microorganisms among the 13 ecosystems. To calculate specific respiration rates, we divided microbial respiration rates over the first 10 d of laboratory incubation by the microbial biomass C content of each soil sample (Anderson and Domsch 1989). Values were expressed as milligrams of CO₂-C respired per gram of microbial C per hour.

Statistical analyses

An analysis of variance for a completely randomized design was used to test for significant differences among ecosystems, and means were compared using a Fisher’s protected least-significant-difference (LSD) procedure. The first-order rate equation was fit to CO₂-C and inorganic N production for each filtration unit using non-linear regression. Simple and multiple linear-regression analyses were used to relate ANPP and soil texture with microbial biomass and labile C and N pools (Wilkinson 1989). Significance for all statistical analyses was accepted at \(\alpha = 0.05 \).

RESULTS

Silt + clay ranged from 90% in the tallgrass prairie (Konza) to 11% in the glacially derived soils beneath the prairie and forests of the Lake States region (Table 3). The highest soil pH (8.40) was in the calcareous soils of the desert shrubland and lowest (3.95) in the northern hardwood forest at Hubbard Brook. Organic C ranged from 390 g/m² in the desert grassland (Sevilleta) to 8935 g/m² in the northern hardwood forest (Hubbard Brook; Fig. 1A, Table 3). Patterns of soil total N among ecosystems were similar to those of organic C (Fig. 1B).

Soil microbial C was 2 g/m² in the sandy, organic-matter-poor soil of the desert grassland (Sevilleta), the lowest value measured in any ecosystem (Fig. 1C). The largest microbial C pool (134 g/m²) occurred in the fine-textured, organic-matter-rich soil of the tallgrass prairie (Konza). Microbial C in the tallgrass prairie (Konza) was almost 50 times greater than that of the shortgrass steppe (3 g/m²). Topographic position with-
in these grassland ecosystems had little influence on microbial C, and contents were similar along each catenary sequence (Appendix). In the forested ecosystems, the smallest pool of microbial C occurred in the pinyon-juniper forest (9 g/m²), whereas the largest pool (128 g/m²) occurred in the southern hardwood forest (Fig. 1C). Microbial C was 0.2% of soil organic C in the shortgrass steppe and was 6.4% in the tallgrass prairie of Minnesota; values in the other ecosystems were intermediate (Table 4). Differences in microbial N among ecosystems were similar to those for microbial C (Fig. 1D).

Microbial C displayed a positive, linear relationship with ANPP that accounted for 51% of the variation in microbial biomass among the 13 ecosystems (Table 5, Fig. 2A). However, microbial C was not significantly related to either soil silt + clay (Fig. 2B) or clay content. Microbial C also was linearly related to organic C ($r^2 = 0.201, P = 0.035$) and mean annual precipitation ($r^2 = 0.481, P = 0.001$). Microbial N displayed a signifi-
cantly linear relationship with ANPP (Table 5), but was not related to either soil silt + clay or clay content. Aboveground net primary production and percentage of silt + clay were not significantly related.

Respired C pools ranged from 115 g/m² in the desert grassland (Jornada) to 491 g/m² in the southern hardwood forest (Fig. 1E). Although the pool of respired C was greatest in the forested ecosystems and least in the arid ecosystems, the opposite trend was present when respired C was expressed as a percentage of soil organic C (Table 4). For example, respired C ranged from ≈5% of soil organic C in the old-growth Douglas-fir, alpine tundra, and northern hardwood (Hubbard Brook) ecosystems to 42% in the desert grassland (Sevilleta). Respired C displayed a significant positive relationship with ANPP and percentage of silt + clay (Table 5, Fig. 2C and D). A multiple-regression model incorporating both variables accounted for 65% of the variation among ecosystems (Table 5). Respired C also was significantly related to organic C ($r^2 = 0.591$, $P = 0.002$), microbial C ($r^2 = 0.324$, $P = 0.042$), and actual evapotranspiration, AET ($r^2 = 0.411$, $P = 0.018$).

Rate constants (k) for microbial respiration, determined by nonlinear fits to the first-order model, differed significantly among ecosystems. However, most values fell within a relatively narrow range (0.159–0.357 wk⁻¹; Fig. 1F). As a consequence, pool turnover (1/k at 35°C) varied from 2.8 wk in desert grassland (Sevilleta) to 6.3 wk in the tallgrass prairie (Konza).

The specific respiration rates for microbial biomass C varied from 3.9 mg g⁻¹ h⁻¹ in the tallgrass prairie (Konza) to 173.6 mg g⁻¹ h⁻¹ in the shortgrass steppe. Values were low in the northern (Manistee) and southern hardwood forests, tallgrass prairie (Cedar Creek), and old-growth Douglas-fir ecosystems (Table 4). In contrast, specific respiration rates were high in the desert ecosystems, alpine tundra, and one northern hardwood forest (Hubbard Brook). There was a significant, negative linear relationship between specific respiration rates and AET ($r^2 = 0.332$, $P = 0.043$). However, specific respiration rates were not significantly related to ANPP, soil texture, or other climatic variables.

Net mineral N production exhibited a linear increase through time (i.e., zero-order kinetics) in most ecosystems. First-order responses were present in the alpine tundra, tallgrass prairie (Cedar Creek), and forested ecosystems (see Appendix). Therefore, we used net mineral N production during the 32-wk incubation as an index of potential net N mineralization. The desert ecosystems with their low soil organic C contents also mineralized the lowest quantities of N under laboratory conditions (Fig. 1G). In contrast, potential net N mineralization was relatively high in the forested ecosystems and alpine tundra (Fig. 1G). We found equivalent values in the shortgrass steppe and the tallgrass prairie (Konza), even though organic C was much greater in the tallgrass prairie. The ratio of respired C to mineralized N differed by an order of magnitude among ecosystems, with the lowest ratio (12) measured in the

Table 5. Regression equations predicting microbial biomass and labile organic C per unit area (in g/m²) from aboveground net primary production (g/m²) and soil silt + clay (% of dry mass). Relationships were constructed using 13 late-successional ecosystems distributed across North America.

<table>
<thead>
<tr>
<th>Soil microbial biomass</th>
<th>r^2</th>
<th>Root MSE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = 13.91 + 0.080(ANPP)</td>
<td>0.512</td>
<td>35.27</td>
<td>0.006</td>
</tr>
<tr>
<td>N = 4.10 + 0.020(ANPP)</td>
<td>0.561</td>
<td>8.16</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respired C</th>
<th>r^2</th>
<th>Root MSE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = 236.45 + 0.149(ANPP)</td>
<td>0.318</td>
<td>98.29</td>
<td>0.044</td>
</tr>
<tr>
<td>C = 200.74 + 2.948(silt + clay)</td>
<td>0.327</td>
<td>97.68</td>
<td>0.041</td>
</tr>
<tr>
<td>C = 123.43 + 0.152(ANPP) + 2.989(silt + clay)</td>
<td>0.655</td>
<td>73.38</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Lake States northern hardwood forest and the highest (125) in the tallgrass prairie (Table 4). Laboratory estimates of net N mineralization displayed a significant positive relationship with ANPP ($r^2 = 0.311, P = 0.047$), organic C ($r^2 = 0.641, P = 0.001$) and total N ($r^2 = 0.443, P = 0.013$). Net N mineralization, N_{min}, in grams per square metre, also was significantly inversely related to the ratio of respired C to mineralized N ($N_{\text{min}} = 46.68 - 21.902 \times \log(\text{respired C/mineralized N})$, $r^2 = 0.545, P = 0.004$).

Discussion

The biomass of soil microorganisms is thought to reflect long-term C additions to soil from NPP (Anderson and Domsch 1986, McGill et al. 1986), a pattern that could be further modified by soil texture (van Veen et al. 1985). We have argued that such a relationship should be well expressed in late-successional ecosystems where C storage represents an equilibrium between NPP and organic matter decomposition (Vitousek and Reiners 1975). Because soil C storage also is near steady state, NPP in late-successional systems should equal the amount of C entering the soil from above- and belowground plant production. It should, therefore, represent the amount of C available to meet the annual maintenance requirements of microbial populations. In the late-successional ecosystems we studied, ANPP (aboveground NPP) was significantly related to labile organic C pools and microbial biomass, supporting the idea that substrate availability constrains the biomass of soil microorganisms at large spatial scales. Although soil texture was significantly related to respired C pools, we have no evidence to suggest that it influences the microbial biomass content of soil at large spatial scales.

The relationship we found between ANPP and soil microbial biomass also has been observed by Myrold et al. (1989) in a series of relatively late-successional coniferous forests. Aboveground net primary production ranged from 30 to 1400 g m$^{-2}$ yr$^{-1}$ among those ecosystems and accounted for 67% of the variation in microbial C. Myrold et al. (1989) also found ANPP was well correlated ($r = 0.96$) with mean annual microbial respiration, similar to the relationship we found between ANPP and respired C. It is important to note that our results and those of Myrold et al. (1989) are correlative, and causation can only be inferred. How-
ever, both studies strongly suggest that microbial populations in soil are tightly controlled by spatial patterns of autotrophic C fixation and organic matter addition to soil.

Patterns of root production and mortality undoubtedly influence soil C availability and the metabolic activities of soil microorganisms. However, we were unable to account for belowground production for several reasons. Few studies have focused on this process, and where data do exist, measurements are of uncertain accuracy. Several studies have evaluated C allocation in forest ecosystems, but a generalized pattern between above- and belowground production has not emerged. For example, Nadelhofer et al. (1985) proposed that ANPP increases in direct proportion to belowground production. Others have suggested an inverse relationship wherein belowground production on poor sites increases at the expense of aboveground production (Keyes and Grier 1981, Persson 1981, Linder 1987). We are unaware of any generalized relationship between above- and belowground plant production that can be applied to the ecosystems we studied. Consequently, we could only assume that ANPP was proportional to the total amount of C entering the soil from net primary production; such an assumption has obvious limitations. Clearly, estimates of belowground production are needed before a definitive conclusion can be drawn regarding the influence of plant production on soil C availability and microbial populations. Nevertheless, our results support the contention that microbial populations in soil are linked to spatial patterns of plant growth.

Insam et al. (1989) found a significant, but weak, correlation ($r^2 = 0.02$) between soil texture (e.g., clay content) and microbial biomass in temperate agricultural soils. The soils in the aforementioned study ranged from 13% to 39% clay, a range of values similar to that in our study (3-44% clay). We used two measures of soil texture (silt + clay and clay content), but found no relationship between those variables and microbial C. Although several studies have demonstrated that soil texture has a significant influence on soil microbial biomass (van Veen et al. 1985), this relationship may only be of importance within a particular climatic regime. At relatively large spatial scales, factors other than soil texture seem to be more important constraints on the biomass of soil microorganisms.

In many agricultural ecosystems the ratio of microbial biomass C to soil organic C is thought to be relatively constant (Beck 1984, Anderson and Domsch 1986, 1989, Insam et al. 1989). Although microbial biomass was significantly related to organic C, we have no evidence to support a consistent ratio between these C pools. In our study the proportion of soil organic C present as microbial C varied by an order of magnitude (from 0.3 to 3.3%). These results are not unexpected in light of the broad differences in litter production and chemistry among the ecosystems we studied. One would expect to find a small proportion of microbial C in ecosystems where soil organic matter was dominated by a large pool of recalcitrant material or where environmental conditions limit microbial activity. Our results suggest that a fixed relationship between microbial biomass and soil organic matter may only occur in situations where plant litter inputs display little variation (e.g., temperate agricultural soils under similar management practices).

Our data indicate that labile C pools within soil change predictably across broad spatial gradients of ANPP and soil texture. We found that respired C pools were small in ecosystems with low ANPP and sandy-textured soils. Nevertheless, respired C accounted for much different proportions of soil organic C in the forests, prairie, and desert ecosystems. For example, labile C ranged from 5 to 12% of soil organic C in the forests, suggesting that the majority of organic matter in these ecosystems was relatively recalcitrant. In contrast, respired C averaged 30% of soil organic C in the desert ecosystems, and was 21% in the shortgrass steppe. The relatively large proportion of labile C in these arid ecosystems suggests that physical factors, e.g., soil water potential, likely limit its in situ metabolism. Because labile C represents a relatively large proportion of organic C in arid ecosystems, a change in climate that favors microbial activity has the potential to rapidly influence soil C storage.

Although respired C pools varied substantially among ecosystems, rate constants (k) fell within a relatively narrow range. Turnover times ($1/k$) for respired C ranged from 3 to 6 wk, a relatively short period of time in comparison to more stabilized forms of soil organic matter (e.g., 9 yr for active soil organic matter and 3500 yr for old organic matter; van Veen et al. 1984). Paul and Clark (1989) suggested that microbial biosynthesis can significantly influence rate constants, with corrections for microbial growth efficiency generally increasing the value of k. The soils we studied varied in organic matter chemistry (i.e., C:N ratio; see Appendix) and probably differed in the species composition of the microbial community, two factors known to influence growth efficiency (Adu and Oades 1978, Holland and Coleman 1987, Schimel 1988). However, correcting our data for microbial biosynthesis would only decrease turnover times, further suggesting that respired C was derived from a relatively labile C substrate. As a consequence, in situ differences in microbial respiration among ecosystems are likely driven by variation in environmental conditions and labile C pool size and not by differences in substrate chemistry, as reflected by k.

Specific respiration rates have been used to assess the substrate-use efficiency of soil microorganisms (Anderson and Domsch 1989). Microbial populations exhibiting low rates are thought to allocate proportionately more C to biosynthesis and less to cell maintenance. In our study, specific respiration rates varied
by a factor of 35 among ecosystems, less than that reported by Santruckova and Straskraba (1991) among agricultural, old field, pasture, and forest ecosystems. Although rates varied widely among ecosystems, we found no evidence to suggest that soil texture influences the substrate-use efficiency of microbial biomass. The highest rates we measured occurred in ecosystems in which microbial C represented a small proportion of soil organic C (i.e., desert ecosystems, pinyon–juniper forest, shortgrass steppe, alpine tundra, and northern hardwood forest; Table 4). One could conclude that microbial populations in these ecosystems are inefficient at using C for biosynthesis, or that soil organic matter was dominated by compounds not readily metabolized for biosynthesis. The latter is likely in the alpine tundra, pinyon–juniper, and northern hardwood forests (Hubbard Brook) in which labile C pools were small. In the desert ecosystems and shortgrass steppe, however, respired C ranged from 18 to 42% of soil organic C, suggesting that soil organic matter was not dominated by material resistant to microbial degradation. High specific respiration rates in those ecosystems resulted from a large initial CO₂ flush when these previously dry soils (3% H₂O w/w) were brought to field capacity. Soullides and Allison (1963) suggested large releases of CO₂ following the wetting of dry soil result from the metabolism of labile C derived from dead microbial cells. Relatively large pools of labile C, in combination with low microbial C contents and high specific respiration rates, suggest that environmental factors (e.g., low water potentials) exert an important influence on soil C availability and microbial activity in arid ecosystems. The inverse relationship between specific respiration rates and actual evapotranspiration (AET) provides further support for this contention.

One could argue that a single point sample in time may not be adequate to assess the substrate-use efficiency and biomass of soil microorganisms. Seasonal variation in controlling factors, like soil temperature, water potential, and substrate input, could give rise to marked variation in heterotrophic activity as well as biomass. However, data regarding seasonal patterns of microbial substrate use and biomass are not available for the ecosystems we studied. Wardle (1992) summarized season changes for a different set of desert, pasture, savanna, and forest ecosystems, and concluded that microbial biomass reaches a seasonal peak in temperate ecosystems during midsummer, or during seasons when rainfall is high. In our study soil temperatures reach a seasonal maximum during midsummer in all ecosystems, but seasonal patterns of precipitation are more variable (Greenland 1987). Most ecosystems are characterized by ample summer precipitation; however, midsummer drought is characteristic of the Douglas-fir ecosystem (Greenland 1987). Nonetheless, our sampling occurred when microbial biomass should be near or at a seasonal maximum, a period of time when its size should be limited by substrate availability. Clearly, sequential sampling over time would provide further insight into the dynamics of labile soil organic matter and the biomass of soil microorganisms.

Net N mineralization is a process strongly conforming to first-order kinetics (Stanford and Smith 1972, Talpaz et al. 1981, Juma et al. 1984). Such a response assumes that NH₄⁺ production occurs as a constant proportion of some organic substrate pool(s). The alpine tundra, tallgrass prairie (Cedar Creek), and the forested ecosystems all displayed first-order kinetics, but rate constants ranged more widely than those for respired C (see Appendix). Although first-order responses have been reported for desert soils (Fisher et al. 1987), we found that net N mineralization was linear in arid ecosystems. Klopftek (1987) also found linear increases in net N mineralization for several pinyon–juniper forests in the southwestern U.S. The kinetic responses we observed could be explained by two alternatives. Different kinetics (i.e., zero-order vs. first-order) could apply to net N mineralization in the ecosystems we studied. However, this seems unlikely given the large number of studies documenting a first-order response. A more plausible explanation is that first-order rate constants vary widely among these ecosystems. If N was mineralized from stable forms of soil organic matter, then low rate constants could produce a relatively linear response even after 32 wk of incubation. Studies centered on quantifying changes in substrate quality in the ecosystems we studied could provide insight into the exact mechanism(s) responsible for these kinetic responses.

The inverse relationship we observed between the respired C: mineralized N ratio and potential net N mineralization suggests that labile C pool size influences the balance between gross rates of mineralization and microbial immobilization. Schimel et al. (1985a) reported a similar relationship for prairie and agricultural ecosystems occurring on the same soil, where-in the prairie soils had high respired C: mineralized N ratios and low rates of potential net N mineralization. The ratios we report for tallgrass prairie (Cedar Creek), alpine tundra, and forest ecosystems are similar to those of Schimel et al. (1985a), but ratios in the other ecosystems are much greater. Zak et al. (1993) found respired C: mineralized N ratios varied from 12 to 19 for a series of Lake States forests. In that study, respired C: mineralized N ratios were also significantly related to net N mineralization \((r = -0.989, P = 0.001; n = 5) \) calculated from Zak et al. (1993). In combination, these results indirectly suggest that greater amounts of N are immobilized when labile C pools are large.

Numerous studies have used climatic and edaphic factors to predict spatial patterns of plant production. For example, global patterns of ANPP and plant litter production can be described using actual evapotranspiration (AET), an integrated measure of temperature, precipitation, and soil water-holding capacity (Rosenzweig 1968, Lieth 1973, Meentemeyer et al. 1982). In
temperate North American forests, N availability is thought to limit plant production because ANPP is often well correlated with rates of net N mineralization (Pastor et al. 1984, Zak et al. 1989). In the diverse ecosystems we studied ANPP was better correlated with AET ($r = 0.708$, $P = 0.005$) than N availability, suggesting that climatic factors impose a greater constraint on plant production at the scale of our study; such a result is not surprising. Nevertheless, our laboratory incubation may not have accurately portrayed relative differences in N availability among ecosystems, which could, in part, contribute to the poor correlation we observed. Laboratory conditions of temperature and soil water potential differed greatly from those in situ. This effect was greatest in the arid ecosystems and alpine tundra, where laboratory estimates probably least reflect in situ rates. As such, our relative estimates of net N mineralization are high for these ecosystems. Additional variation was undoubtedly introduced into the relationship between ANPP and net N mineralization, because we did not directly measure ANPP in each ecosystem. Direct measurements of ANPP together with in situ estimates of net N mineralization are needed before generalizations can be made regarding the influence of N availability on plant productivity at the spatial scale of our study.

In summary, our results suggest that plant production influences labile soil C pools and microbial biomass at broad spatial scales. Although soil texture was significantly related to resired C, we have no indication that it constrains the biomass or C-use efficiency of soil microorganisms at the spatial scale of our study. Climate directly influences soil microorganisms by affecting soil temperature and moisture regimes, which regulate the rate of physiological processes. Climate also indirectly regulates microbial populations by influencing rates of plant production and the subsequent input of substrate both above- and belowground. Regional patterns of plant production and the cycling of C and N have been predicted using climatic and edaphic factors as driving variables (Pastor and Post 1986, Parton et al. 1988). Our work suggests that plant production holds promise in predicting patterns of labile organic matter pools and microbial biomass at much larger spatial scales. Moreover, changes in global climate that alter spatial patterns of plant production also have the potential to modify soil C availability and the biomass of soil microorganisms.

ACKNOWLEDGMENTS

This research was supported by National Science Foundation Grants for Long-Term Ecological Research at the Cedar Creek Natural History Area (BSR 881184) and for Collaborative Research in the LTER Network (BSR 8996172). Numerous people graciously contributed their time and data to this project. They include: A. El Haddi (CCNA), Tom Bell (H. J. Andrews), Gary Cunningham (Jornada), Tony Federer (Hubbard Brook), Bill Lauenroth (CPER), David Perry (H. J. Andrews), Tim Seastedt (Konzka), and Carl White (Sevilleta). We thank David Greenland for sharing his long-term climate data, and his willingness to run the water balance model for the Manistee, Sevilleta, and Hubbard Brook sites. We also thank Tim Seastedt, Doug Moore, Walt Whitford, and Marilyn Walker for their willingness to share unpublished ANPP data for their sites. Carol Bell, Bill Holmes, Brenda Memering, and Amy Merrill contributed many hours of assistance in the laboratory. Suggestions by Peter Groffman, Phil Robertson, Knute Nadelhoffer, Diana Randlett, and several anonymous reviewers have greatly improved this manuscript; we sincerely thank them. This paper is also contribution number 92-140-J from the Kansas Agricultural Experiment Station.

LITERATURE CITED

Anderson, T. H., and K. H. Domsch. 1992. The metabolic quotient for CO$_2$ (q-CO$_2$) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soil. Soil Biology and Biochemistry 25:393–395.

Soulides, D. A., and F. E. Allison. 1961. Effect of drying and freezing on carbon dioxide production, available min-
Whittaker, R. H. 1975. Communities and ecosystems. MacMillan, New York, New York, USA.
APPENDIX

Summary of data (means ± 1 se) for ecosystems distributed across North America.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ecosystem</th>
<th>Organic C (g/m²)</th>
<th>Total N (g/m²)</th>
<th>C:N</th>
<th>Extractable NH₄⁺ (mg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. J. Andrews</td>
<td>Old-growth Douglas-fir</td>
<td>6510.6 ± 443.24</td>
<td>231.4 ± 16.13</td>
<td>28.4 ± 1.13</td>
<td>86.7 ± 71.4</td>
</tr>
<tr>
<td>Sevilleta</td>
<td>Pinyon-Juniper</td>
<td>2331.4 ± 512.50</td>
<td>167.5 ± 28.80</td>
<td>13.2 ± 0.60</td>
<td>17.9 ± 10.5</td>
</tr>
<tr>
<td>Desert</td>
<td>Desert grassland</td>
<td>391.8 ± 15.70</td>
<td>37.7 ± 1.23</td>
<td>10.4 ± 0.23</td>
<td>4.6 ± 4.6</td>
</tr>
<tr>
<td>Jornada</td>
<td>Desert shrubland</td>
<td>675.7 ± 65.18</td>
<td>60.5 ± 5.56</td>
<td>11.1 ± 0.30</td>
<td>37.9 ± 15.7</td>
</tr>
<tr>
<td></td>
<td>Under shrub</td>
<td>836.2 ± 57.11</td>
<td>73.9 ± 4.85</td>
<td>11.5 ± 0.80</td>
<td>70.1 ± 16.1</td>
</tr>
<tr>
<td></td>
<td>Between shrub</td>
<td>579.5 ± 82.24</td>
<td>40.8 ± 2.61</td>
<td>13.9 ± 1.38</td>
<td>107.3 ± 68.0</td>
</tr>
<tr>
<td>Niwot Ridge</td>
<td>Alpine tundra</td>
<td>7206.1 ± 447.34</td>
<td>507.6 ± 30.81</td>
<td>14.2 ± 0.18</td>
<td>116.4 ± 26.1</td>
</tr>
<tr>
<td>Central Plains</td>
<td>Shortgrass steppe</td>
<td>1753.1 ± 132.14</td>
<td>158.7 ± 8.83</td>
<td>10.9 ± 0.28</td>
<td>46.6 ± 25.3</td>
</tr>
<tr>
<td></td>
<td>Bottom slope</td>
<td>1562.4 ± 109.55</td>
<td>147.7 ± 7.18</td>
<td>10.5 ± 0.26</td>
<td>22.0 ± 9.6</td>
</tr>
<tr>
<td></td>
<td>Middle slope</td>
<td>1460.4 ± 55.37</td>
<td>140.1 ± 4.23</td>
<td>10.4 ± 0.19</td>
<td>94.8 ± 22.1</td>
</tr>
<tr>
<td>Konza Prairie</td>
<td>Tallgrass prairie</td>
<td>3972.0 ± 96.88</td>
<td>306.9 ± 7.54</td>
<td>12.9 ± 0.19</td>
<td>8.7 ± 5.7</td>
</tr>
<tr>
<td></td>
<td>Bottom slope</td>
<td>4915.8 ± 159.01</td>
<td>392.8 ± 11.91</td>
<td>12.5 ± 0.32</td>
<td>5.6 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>Middle slope</td>
<td>4828.3 ± 122.90</td>
<td>345.0 ± 7.23</td>
<td>14.0 ± 0.50</td>
<td>40.0 ± 6.6</td>
</tr>
<tr>
<td>Cedar Creek</td>
<td>Tallgrass prairie</td>
<td>2047.1 ± 162.7</td>
<td>109.2 ± 3.31</td>
<td>18.7 ± 0.48</td>
<td>18.5 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>Upland pin oak forest</td>
<td>3012.0 ± 97.3</td>
<td>142.0 ± 16.2</td>
<td>21.0 ± 0.27</td>
<td>163.2 ± 69.7</td>
</tr>
<tr>
<td>Manistee</td>
<td>Northern hardwood forest</td>
<td>4148.0 ± 350.50</td>
<td>244.7 ± 18.32</td>
<td>17.5 ± 0.63</td>
<td>108.5 ± 18.5</td>
</tr>
<tr>
<td>Coweeta</td>
<td>Southern hardwood forest</td>
<td>3925.7 ± 421.98</td>
<td>217.5 ± 21.80</td>
<td>18.0 ± 0.56</td>
<td>240.0 ± 25.6</td>
</tr>
<tr>
<td>Hubbard Brook</td>
<td>Northern hardwood forest</td>
<td>8935.3 ± 1696.44</td>
<td>404.9 ± 75.82</td>
<td>21.7 ± 0.88</td>
<td>415.7 ± 172.5</td>
</tr>
</tbody>
</table>

* Ecosystem displayed linear increases in mineral N produced over the 32-wk incubation.
<table>
<thead>
<tr>
<th>Extractable NO₃⁻ (mg/m²)</th>
<th>Microbial biomass C (g/m²)</th>
<th>Microbial biomass N (g/m²)</th>
<th>Respired C (g/m²)</th>
<th>Respired N (g/m²)</th>
<th>Rate constant, k (wk⁻¹)</th>
<th>N mineralization (g/m²)</th>
<th>Mineralized N (g/m²)</th>
<th>Rate constant, k (wk⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 ± 4.2</td>
<td>105.8 ± 8.12</td>
<td>23.6 ± 1.91</td>
<td>342.2 ± 31.26</td>
<td>0.255 ± 0.0117</td>
<td>14.4 ± 1.24</td>
<td>14.7 ± 1.08</td>
<td>0.099 ± 0.0124</td>
<td></td>
</tr>
<tr>
<td>61.9 ± 35.6</td>
<td>9.2 ± 2.78</td>
<td>1.9 ± 0.46</td>
<td>281.4 ± 57.30</td>
<td>0.336 ± 0.0216</td>
<td>3.0 ± 0.39</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>7.4 ± 6.5</td>
<td>2.5 ± 0.61</td>
<td>0.6 ± 0.08</td>
<td>159.3 ± 12.52</td>
<td>0.357 ± 0.0315</td>
<td>2.3 ± 0.22</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>89.2 ± 46.4</td>
<td>16.2 ± 2.35</td>
<td>3.0 ± 0.38</td>
<td>115.1 ± 16.18</td>
<td>0.310 ± 0.0378</td>
<td>3.1 ± 0.72</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>189.1 ± 96.2</td>
<td>21.1 ± 4.25</td>
<td>5.1 ± 0.86</td>
<td>273.6 ± 30.77</td>
<td>0.285 ± 0.0215</td>
<td>6.4 ± 0.39</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>233.1 ± 188.2</td>
<td>8.8 ± 1.39</td>
<td>1.6 ± 0.16</td>
<td>125.2 ± 14.13</td>
<td>0.178 ± 0.0171</td>
<td>4.1 ± 0.29</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>238.1 ± 64.1</td>
<td>55.1 ± 9.49</td>
<td>15.2 ± 2.63</td>
<td>387.3 ± 65.74</td>
<td>0.326 ± 0.0299</td>
<td>19.3 ± 3.37</td>
<td>23.1 ± 2.74</td>
<td>0.078 ± 0.0113</td>
<td></td>
</tr>
<tr>
<td>253.9 ± 138.7</td>
<td>3.1 ± 0.33</td>
<td>2.5 ± 0.24</td>
<td>365.2 ± 42.19</td>
<td>0.204 ± 0.0267</td>
<td>12.7 ± 2.86</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>58.8 ± 27.9</td>
<td>2.5 ± 0.34</td>
<td>1.8 ± 0.23</td>
<td>301.9 ± 27.31</td>
<td>0.280 ± 0.0296</td>
<td>7.3 ± 0.66</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>150.3 ± 39.9</td>
<td>3.0 ± 0.28</td>
<td>1.6 ± 0.14</td>
<td>336.4 ± 19.93</td>
<td>0.320 ± 0.0278</td>
<td>9.2 ± 1.28</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>413.3 ± 61.9</td>
<td>129.3 ± 6.26</td>
<td>32.8 ± 1.32</td>
<td>371.9 ± 21.18</td>
<td>0.159 ± 0.0078</td>
<td>10.2 ± 1.52</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>822.5 ± 143.4</td>
<td>137.6 ± 19.11</td>
<td>34.9 ± 1.95</td>
<td>466.7 ± 43.34</td>
<td>0.254 ± 0.0285</td>
<td>5.5 ± 1.40</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>881.8 ± 216.4</td>
<td>135.7 ± 10.04</td>
<td>32.4 ± 0.95</td>
<td>415.9 ± 41.89</td>
<td>0.184 ± 0.0197</td>
<td>3.6 ± 0.57</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>193.9 ± 76.5</td>
<td>43.0 ± 2.88</td>
<td>13.4 ± 0.98</td>
<td>275.5 ± 17.31</td>
<td>0.216 ± 0.0107</td>
<td>10.3 ± 0.72</td>
<td>11.5 ± 0.54</td>
<td>0.059 ± 0.0080</td>
<td></td>
</tr>
<tr>
<td>28.1 ± 23.1</td>
<td>59.9 ± 5.88</td>
<td>15.1 ± 0.82</td>
<td>288.5 ± 14.54</td>
<td>0.225 ± 0.0125</td>
<td>14.9 ± 1.20</td>
<td>14.8 ± 1.47</td>
<td>0.186 ± 0.0208</td>
<td></td>
</tr>
<tr>
<td>696.7 ± 134.3</td>
<td>102.9 ± 9.91</td>
<td>26.6 ± 1.91</td>
<td>276.9 ± 24.39</td>
<td>0.313 ± 0.0555</td>
<td>22.3 ± 1.43</td>
<td>21.8 ± 1.56</td>
<td>0.112 ± 0.0107</td>
<td></td>
</tr>
<tr>
<td>22.2 ± 9.6</td>
<td>128.1 ± 17.40</td>
<td>32.1 ± 2.99</td>
<td>491.0 ± 60.49</td>
<td>0.253 ± 0.0309</td>
<td>19.2 ± 1.78</td>
<td>21.4 ± 2.30</td>
<td>0.059 ± 0.0065</td>
<td></td>
</tr>
<tr>
<td>235.9 ± 139.1</td>
<td>28.1 ± 3.93</td>
<td>16.4 ± 1.30</td>
<td>475.5 ± 81.21</td>
<td>0.180 ± 0.0044</td>
<td>31.0 ± 5.93</td>
<td>31.9 ± 5.21</td>
<td>0.154 ± 0.0123</td>
<td></td>
</tr>
</tbody>
</table>