A metabolic view of the diversity–stability relationship

Julián Simón López-Villalta

Departamento de Ecología, Universidad Autónoma de Madrid, Cantoblanco, 28040 Madrid, Spain

Received 8 June 2007; received in revised form 16 December 2007; accepted 9 January 2008
Available online 26 January 2008

Abstract

A theoretical analysis of the “portfolio effect” expressed in metabolic terms indicates that the coefficient of variation of total biomass in the ecosystem is influenced by three factors: metabolic diversity, total population size and organism biomass (body mass). The contribution of these factors to ecosystem stability depends on the power scaling of population size to its temporal variance: the Tilman’s z. In natural populations, $1 < z < 2$ both from a theoretical and an empirical background, and so a higher metabolic diversity, a larger population size and a bigger body mass are expected to increase ecosystem stability. The maximization of any of these factors will enhance ecosystem stability both at ecological (successional) and evolutionary timescales, which could explain a number of trends observed in ecosystems and in the history of life.

Keywords: Metabolism; Portfolio effect; Population size; Biomass; Ecosystem stability

1. Introduction

The influence of diversity on ecosystem stability is a classic debate in the field of ecology (for example, Elton, 1958; Odum, 1971; MacArthur, 1955; May, 1973; see McCann, 2000 for a review) and still remains an active research field (Tilman and Downing, 1994; Tilman et al., 1996, 2001; Pfisterer et al., 2002; Doak et al., 1998; Caldeira et al., 2005; Loreau et al., 2001). The diversity–stability relationship is usually treated from the viewpoint of plant–animal species diversity, but the concept of functional diversity allows a broader point of view by referring to the variety of functional roles that species perform in ecosystems (Tilman et al., 1997; Loreau et al., 2001). This paper discusses the stabilizing effect of one kind of functional diversity that is very small in plant–animal communities: the diversity of metabolic guilds. Metabolic guilds are communities of organisms that perform the same energy metabolism (sulfate reduction, oxygenic photosynthesis, etc.) The largest metabolic diversity is found in the ecosystem’s microbial populations, because microorganisms, especially bacteria and archaea, represent most of the metabolic diversity of the biosphere (Madigan et al., 2006; Pace, 1997; DeLong and Pace, 2001; Amend and Shock, 2001). On the one hand, the main phenotypic diversity of bacteria and archaea is metabolic, not morphological such as in eukaryotes; on the other, early life on Earth consisted exclusively of microorganisms, with global ecological dominance of bacteria and archaea throughout billion years (Knoll, 2003; Nisbet and Sleep, 2001; Nisbet and Fowler, 1999; Schopf, 2000). Therefore, any influence of biodiversity on ecosystem stability at the beginning of the biosphere system was probably caused by metabolic diversity. In this paper, an analysis of the diversity–stability relationship is presented in metabolic terms, which provides a theoretical insight into the stabilizing effects of three biological factors: metabolic diversity, population size and organism biomass as an indicator of metabolic rate.

2. A metabolic perspective of the “portfolio effect”

The biomass b of one metabolic guild must be expressed in terms of the collective metabolic rate. For simplicity, the assumption is made that all organisms belonging to one metabolic guild have the same biomass m. If the $\frac{3}{4}$ scaling power of biomass to metabolism is taken (West et al.,
1997), a number \(n \) of organisms represents a metabolic rate of
\[
r = inn^{3/4} = \text{in}^{1-1/4} = ibm^{-1/4}.
\]
where \(i \) is a constant. Therefore, for any metabolic guild
\[
b = krn^{1/4}
\]
being \(k \) the constant \(1/i \). The theoretical approach used by Tilman (1999) to model the so-called “portfolio effect” in the species diversity–stability relationship can be adapted to explore the effect of metabolic diversity by taking metabolic guilds instead of species into account and writing biomass as a function of metabolic rate. The ecosystem’s temporal stability can be measured as the coefficient of variation \((S = \mu/\sigma) \) of the total biomass, that is, the ratio of the average total biomass to its standard deviation in a time series. In accordance with Tilman (1999), I am going to explore the effect of metabolic diversity by taking the species diversity–stability relationship can be adapted to model the so-called “portfolio effect” in Tilman (1999) for species populations. Finally, for an ecosystem with only one metabolic guild, the coefficient of variation of total biomass is
\[
S_1 = b_1/\sigma_1 = krn^{1/4}/c^{1/2}h_1^{2/2} = Cr^{1-1/z}m^{2-2/z},
\]
where \(C \) is a constant. Using Eq. (1), an equivalent expression of Eq. (4) is
\[
S_1 = C(nm)^{1-1/z}.
\]
In this expression, it is remarkable that the coefficient of variation is a function of the number of organisms and of organism biomass, both factors being influenced by the power scaling \(z \). As will be discussed later, this relationship has interesting ecological implications concerning how to maximize ecosystem stability.

In the second case, for an ecosystem with \(N \) metabolic guilds, the following assumptions are made to better compare with the previous case: all the organisms have the same biomass \(m \), all the metabolic guilds have the same average population and therefore the same average biomass and metabolic rate \(r \), as in Eq. (1). Let the total biomass of the \(N \) metabolic guilds be \(b_N \); then for any metabolic guild, the average biomass is \(b_n/N \), or \(rm^{1/4}N^{-1} \) in the form of Eq. (2). In this situation the temporal variance of the average biomass of any \(ith \) metabolic guild is
\[
\sigma_i^2 = c(b_n/N)^2 = Cz^{1/4}N^{-1}
\]
with \(c \) and \(C \) being two new constants. Assuming for simplicity no covariance between the biomasses of metabolic guilds, the variance of total biomass, \(\sigma_N^2 \), is the sum of the \(N \) variances \(\sigma_i^2 \), that is
\[
\sigma_N^2 = N\sigma_1^2 = Crm^{1/4}N^{1-z}
\]
and the coefficient of variation of total biomass, \(S_N \), is
\[
S_N = b_N/\sigma_N = krn^{1/4}/C^{1/2}r^{1/2}m^{2/8}N^{1-2/z}/2
\]
\[
= kC^{-1/2}r^{1-2/z}m^{2-2/z}N^{z-1/2}.
\]
Replacing \(r \) by \(n/m^{3/4} \) (Eq. (1)) and rearranging, \(S_N \) depends again on \((nm)^{1-1/z} \) as was the case in Eq. (5), with the only difference that now \(n \) represents the average total number of organisms in the \(N \) metabolic guilds.

Finally, the ratio of the coefficients of variation in the two cases is
\[
S_N/S_1 = cN^{z-1/2}
\]
with \(c \) being one constant. The dependence on both the number of organisms and the organism biomass has disappeared. The only stability difference between the metabolically rich and poor situations is a function of the number of metabolic guilds. As a large coefficient of variation indicates more stability, in the previous expression, a metabolically diverse ecosystem is more stable than a metabolically nondiverse one if \(S_N/S_1 > 1 \). The factor \(N \) will contribute to this condition if its scaling power is positive, that is if \(z > 1 \).

3. Discussion

It is interesting to note that when \(z > 1 \), both species diversity (Tilman, 1999) and metabolic diversity contribute to stabilize the community. Plant and animal species in natural communities present \(z \) values above one (Tilman, 1999), and Murdoch and Stewart-Oaten (1989) found that \(1 < z < 2 \) from both a theoretical and an empirical viewpoint. Therefore, for natural populations, metabolic diversity is expected to be a stabilizing factor. However, the lack of data for microbial populations shows the need for future research in this area.

The influence of metabolic diversity on ecosystem stability raises the ecological role of bacteria and archaea in stabilizing the biosphere. Prokaryotes demonstrate an astonishing variety of fermentations, anaerobic respirations, anoxogenic photosynthesis and chemosynthesis (Madigan et al., 2006; Pace, 1997). Most visible eukaryotes only respire aerobically, and, if photosynthetic, undertake oxygenic photosynthesis, but even among macroscopic eukaryotes some remarkable and poorly known metabolic diversity exists. For example, with its aerobic sulfide-oxidizing mitochondria (Powell and Somero, 1986), the bivalve *Solemya reidi* can live as a chemolithotrophic animal. Some fungi oxidize organic carbon through nitrate reduction (Shoun and Tanimoto, 1991; Kobayashi et al., 1996), and in anoxia, certain fungi undertake ammonia fermentation (Zhou et al., 2002). Other fungi might respire organic matter by iron reduction (Ottow and von Klopotek, 1969; unpublished personal data), but this
has not been confirmed (Ehrlich, 2002). Among the microbial eukaryotes, cells ferment, producing hydrogen with special organelles: the hydrogenosomes (Muller, 1993; Biagini et al., 1997). Such a metabolic diversity deserves attention from the viewpoint of the diversity–stability debate of ecology as a probable promoter of ecosystem stability.

The total number of organisms and the organism biomass influences ecosystem stability as shown in Eq. (5). This relationship is independent of metabolic diversity because it is the same in Eq. (8). In Eq. (5), a positive power scaling implies that ecosystem stability increases with a larger population size and a bigger body size per organism. Therefore, it is easy to see that a large population and a high organism biomass stabilize the ecosystem if $z < 2$, and, as discussed, species are expected to be found in this case. Therefore, population size and body mass are expected to be stabilizing factors in natural populations, and thus in ecosystems. Furthermore, an intrinsic stabilizing effect of biomass in ecological communities is implicit in Eqs. (5) and (8) because of the presence of m, and then an expression linking total biomass with the ecosystem’s temporal stability can be obtained

$$S = Cb^{1-z/2}. \quad (10)$$

A summary of the stabilizing effects of metabolic diversity, population size, organism biomass and total biomass is shown in Table 1.

A number of trends of ecological succession can be explained looking at Table 1 and assuming $1 < z < 2$. During ecological succession, ecosystem stability increases simply due to the principle of “prevalence of the stable.” This principle can be considered as the extended form of natural selection (Lotka, 1922), applied to complex systems with a large number of interacting elements subjected to an energy flux that drives them to a stationary state. The prevalence of stable components indicates that, as complex systems, ecosystems tend to gain stability with time by maximizing stabilizing variables. At least from a theoretical viewpoint, the present analysis points to an increase of metabolic diversity, total population size, body mass and total biomass that contributes to ecosystem stability. From empirical studies, it is known that metabolic diversity increases during development of a microbial mat through the generation of anoxic to suboxic habitats for anaerobic metabolisms (Van Gemerden, 1993; Des Marais, 2003), and, during ecological succession, the substitution of species with small individual biomass (r strategy) by others with a large body size (K strategy; see Pianka, 1970) is clearly observed, together with an increase of total biomass (Odum, 1969; Odum, 1971; Margalef, 1963). Furthermore, the reduction of energy flux per unit biomass (E/B, see Odum, 1969) could also be explained since the ratio of metabolic rate to organism biomass is $m^{3/4}/m = m^{-1/4}$. Being negative, the power scaling E/B decreases with an increase of body mass, and, as the latter is a stabilizing factor, the former is expected to decrease during ecosystem organization.

Looking beyond ecosystem assembly to the timescale of evolution, during the history of life on Earth, the same principles would apply with higher biosphere stability as a result. In fact, the trend towards a larger body mass (Cope’s Rule) has been confirmed at least for North American fossil mammals (Alroy, 1998), and is supported by a number of works (see Hone and Benton, 2005, for a review). In summary, the stabilizing nature of ecosystem self-organization implies that four trends can be expected in ecological succession as well as in biological evolution: higher metabolic diversity, larger average total population, bigger body size and bigger total biomass. At least for ecological succession, this seems to be the case.

4. Conclusion

From a theoretical analysis of the “portfolio effect” in the diversity–stability relationship, if, as expected, $1 < z < 2$ in natural populations, then a higher metabolic diversity, a larger population size, a bigger body size and a bigger total biomass would increase the temporal stability of ecosystems both at ecological (successional) and evolutionary timescales.

References

<table>
<thead>
<tr>
<th>Variable</th>
<th>Stabilizing threshold</th>
<th>Natural values $1 < z < 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic diversity</td>
<td>$z > 1$</td>
<td></td>
</tr>
<tr>
<td>Population size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism biomass (body size)</td>
<td>$z < 2$</td>
<td>Stabilizing</td>
</tr>
<tr>
<td>Total biomass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

