








FIG 2 Conceptual example of eigengene network analysis with module E9 under eCO2. (I) Heat map of the standardized relative abundance (SRA) of OTUs
across different samples. Rows correspond to individual OTUs in the module, whereas columns are the samples. The number above each column is the
experimental plot number in the Biocon experiment. Red corresponds to the OTUs whose SRAs are �0, and green signifies those whose SRAs are �0. (II) SRA
of the corresponding eigengene (y axis) across the samples (x axis). The parameter � indicates the percentage of the total variance explained by the eigengene.
(III) Module memberships identify groups of OTUs that consistently coexist in these microbial communities. Only 5 OTUs with signifcant module memberships
are shown here, where the y axis is SRAs and the x axis is individual samples. The values in parentheses are module memberships. (IV) Module visualization
showing the interactions among different OTUs within the module. Blue line, positive interactive (positive correlation); red line, negative interaction (negative
correlation). The different colors of the shading of nodes represent different phylogenetic groups. (V) Phylogenetic tree showing the relationships of the OTUs
observed in the corresponding modules. The tree was constructed by the neighbor-joining approach with 1,000 bootstrap values. Due to space limitation,
bootstrap percentages are not shown on the tree. The symbols before individual OTUs signify different features of nodes in the module. The symbol – indicates
that the OTU exists in both aCO2 and eCO2 networks with significant module memberships, � indicates that the OTU has significant module membership but
is not shared by the corresponding network under aCO2, � indicates that the OTU is shared but without significant module membership, while � indicates that
the OTU is not shared and has no significant module membership. The eigengene analysis figures of all other modules under aCO2 and eCO2 and a detailed
description of each module can be downloaded through http://ieg.ou.edu/4download/.

Phylogenetic Molecular Ecological network

July/August 2011 Volume 2 Issue 4 e00122-11 ® mbio.asm.org 5

 
m

bio.asm
.org

 on January 5, 2016 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 



perspective, peripheral nodes represent specialists whereas mod-
ule hubs and connectors are similar to generalists. Network hubs
are supergeneralists (11).

The topological roles of the OTUs identified in these two net-
works are shown as a Z-P plot in Fig. 3. The majority (97.5%) of
the OTUs were peripherals with most of their links inside their
modules. Among these peripherals, 89% even had no links at all
outside their own modules (i.e., Pi � 0). About 2.5% of the OTUs
were generalists, including 1.6% that were module hubs and 0.9%
that were connectors. However, no network hubs (supergeneral-
ists) were observed in these two networks. Two (OTUs FR765 and
FR1506) of the nine module hubs under eCO2 belonged to Acti-
nobacteria (Fig. 3) that are closely related to Ferrithrix thermotol-
erans and Ilumatobacter fluminis, respectively. Two module hubs
(OTUs R2577 and F2923) could be assigned to Bacteroidetes, while
the others belonged to different major taxa (i.e., Alpha-,and Beta-
proteobacteria, Firmicutes, Chloroflexi, and Acidobacteria). All
module hubs were from different modules and had significant
module memberships with their respective module eigengenes.
Interestingly, four of the five connector OTUs (FR383, FR11588,
FR106, and FR125) were Actinobacteria that are closely related to
Streptosporangium roseum, Ferrithrix thermotolerans, Friedmann-
iella lacustris, and Rubrobacter sp., respectively. The other connec-
tor (OTU R2156) was derived from Acidobacteria close to Edapho-
bacter modestus. In addition, for the shared OTUs, no significant
relationships were observed for Z values (r � 0.06, P � 0.44)
under eCO2 and aCO2. These results also suggested that eCO2

greatly altered the network structure and topological roles of in-
dividual OTUs and key microbial populations.

Association of network structure with environmental char-
acteristics. Similar to our previous network study based on

GeoChip hybridization data (18), the relationships between mi-
crobial network interactions and soil properties were established
with Mantel tests. We used the trait-based OTU significance mea-
sure (24), which is referred to as the square of the correlation
between the signal intensity of an OTU and each soil variable, to
determine a common subgroup of soil properties important to
network interactions. Under eCO2, very strong correlations were
observed between the connectivity and the OTU significance of
the selected soil variables based on all detected OTUs (P � 0.001)
or several phylogenetic groups such as Actinobacteria (P � 0.001),
Bacteroidetes (P � 0.012), Alphaproteobacteria (P � 0.001), and
Betaproteobacteria (P � 0.044) under eCO2 (see Table S3 in the
supplemental material). Under aCO2, the connectivities of Acti-
nobacteria (P � 0.05) were also significantly correlated with the
OTU significance of the selected soil variables. All of the results
together suggested that the network interactions among different
phylogenetic groups/populations were dramatically shifted by
eCO2 and that such changes in network interactions are signifi-
cantly related to soil properties.

DISCUSSION

Metagenomics is a rapidly developing emerging scientific field
which generates tremendous amounts of experimental data via
high-throughput sequencing technologies. However, it comes
with the two-part challenge of how to handle these vast quantities
of data and how to use such information to further address bio-
logical questions, aiming to understand community level func-
tional processes. In this study, we describe a novel framework and
approach for discerning network interactions using high-
throughput sequencing-based metagenomic data. The approach
developed would allow microbiologists to address research ques-
tions (network interactions) which could not be approached pre-
viously and thus should represent a research paradigm shift in
metagenomic analysis.

In this study, the pairwise correlations of relative OTU abun-
dance across different samples were used to delineate an adjacency
matrix for network construction. Based on this adjacency matrix,
a network graph was constructed to represent positive or negative
interactions among different OTUs. Thus, a network connection
between two OTUs in fact describes the co-occurrence of these
two OTUs across different samples but not necessarily their phys-
ical interactions. In other words, both OTUs might be responding
to a common environmental parameter rather than interacting
directly.

Compared to other Pearson correlation-based relevance net-
work approaches (35–37), the network approach described here
has several advantages (18, 38). First, this approach was developed
based on the two universal laws of RMT, and thus, it should be
suitable for various biological systems (e.g., cells, populations,
communities, and ecosystems). Theoretically, the results obtained
with an RMT approach should be more robust and consistent and
should more accurately reflect the nature of the complex systems
under study. Second, the majority of relevance network analysis
methods define the adjacency matrix for network construction
using arbitrary thresholds based on known biological information
(28, 35–37, 39). As a result, the networks obtained vary with the
thresholds selected. However, it is a great challenge in selecting an
appropriate threshold for network construction, especially for
poorly studied organisms and/or microbial communities. In con-
trast, the novel RMT-based approach developed here automati-

FIG 3 Z-P plot showing the distribution of OTUs based on their topological
roles. Each symbol represents an OTU under eCO2 (red) or aCO2 (blue). The
topological role of each OTU was determined according to the scatter plot of
within-module connectivity (Zi) and among-module connectivity (Pi) (11,
34). The module hubs and connectors are labeled with OTU numbers. In
parentheses are the module number, module membership, and phylogenetic
associations.
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cally defines thresholds for network construction and hence no
ambiguity exists for the networks constructed. Moreover, RMT is
useful in removing noise from nonrandom, system-specific fea-
tures, and hence the networks identified should be more accurate
and reliable (18, 38). This is particularly important for dealing
with high-throughput metagenomic data because such data gen-
erally have an inherently high noise level.

The identification and characterization of OTU co-occurrence
modules represent a new approach for detecting the interactions
of microbial populations in a community. Based on the oft-
invoked principle of guilt by association (26), the abundance
changes in the microbial populations with strong module mem-
berships are probably driven by the same underlying factors.
Thus, it is reasonable to hypothesize that the microbial popula-
tions with strong module memberships are physically and/or
functionally associated in a microbial community. This hypothe-
sis has important implications not only for our understanding of
the interactions and ecological functions of the known cultivated
microorganisms but also for predicting the potential ecological
roles of as-yet-uncultivated microorganisms. As shown in this
study, the modularity, module memberships, topological roles,
interaction patterns (positive, zero, or negative), and phylogenetic
relationships of individual OTUs are rich sources of new hypoth-
eses for identifying key microbial populations and for under-
standing their interactions and ecological roles in grassland mi-
crobial communities.

Identification of keystone populations is a critical issue in ecol-
ogy, but it is very difficult to achieve, especially in microbial com-
munities given their extreme complexity, high diversity, and un-
cultivated status. As demonstrated in this study, key populations
could be identified based on network topology, module member-
ships, and/or their relationships to ecosystem functional traits.
The conceptual framework developed in this study could provide
important information on candidate genes/populations most im-
portant to certain ecosystem processes and functioning. This
could be particularly important in ecosystem modeling studies in
which microbial community structure must be appropriately sim-
plified prior to their incorporation into ecosystem models.

Knowledge of the responses of biological communities to eCO2

and their mechanisms is critical for projecting future climate
change (6, 8). In this study, we demonstrated the impacts of eCO2

on the network interactions among different phylogenetic groups/
populations based high-throughput metagenomic sequencing
data and the relationships between network structure and soil
properties. It is obvious that the network interactions among dif-
ferent microbial phylogenetic groups/populations are greatly af-
fected by eCO2 in this grassland ecosystem. These results are con-
sistent with our previous study of fMENs (18) and other studies of
macroecology (40). To the best of our knowledge, this is the first
study to document the changes in network interactions among
different phylogenetic groups/populations of microbial commu-
nities in response to eCO2.

The relationship between biodiversity and ecosystem func-
tioning has emerged as a central issue in ecological and environ-
mental sciences (41–47) and is one of the great challenges of the
21st century’s sciences (48). Traditionally, almost all biodiversity
studies in microbial ecology consider just species richness and
abundance and ignore the interactions among different microor-
ganisms. However, network interactions could be more impor-
tant to ecosystem processes and functions than species diversity

(parts list). In this study, we developed a novel conceptual frame-
work for determining network interactions among different phy-
logenetic groups/populations in microbial communities based on
high-throughput metagenomic sequencing data. This novel
framework will allow microbial ecologists to examine research
issues beyond microbial species richness and abundance. The de-
veloped pMEN framework and information on the responses of
network structure to eCO2 should have a profound impact on the
study of biodiversity, ecosystem ecology, systems microbiology,
and climate change.

MATERIALS AND METHODS

In this study, 24 soil samples used for network analysis of micro-
bial communities were collected from the Biocon (biodiversity,
CO2, and N) experimental site located at the Cedar Creek Ecosys-
tem Science Reserve in Minnesota (45°N, 93°W). Of these 24 sam-
ples, 12 were from aCO2 replicate plots and 12 were from eCO2

replicate plots. All of the plots contained 16 species without addi-
tional N supply. The soil samples were collected in July 2007, and
each sample was a composite of five soil cores from depths of 0 to
15 cm (10).

Two MENs were constructed with the following steps. First,
the experimental data used for constructing pMENs were gener-
ated by pyrosequencing of 16S rRNA genes (10). Since the se-
quence numbers of individual OTUs obtained varied significantly
among different samples, the relative proportions of sequence
numbers were used for subsequent Pearson correlation analysis.
Second, a similarity matrix was obtained by taking the absolute
values of the correlation matrix. This similarity matrix measures
the degree of concordance between the abundance profiles of in-
dividual OTUs across different samples. Third, an appropriate
threshold for defining network structure, st, is defined using the
RMT-based network approach (38, 49) to obtain an adjacency
matrix, which encodes the strength of the connection between
each pair of nodes. Fourth, the submodules within a large module
were detected by fast greedy modularity optimization (32). In ad-
dition, for network comparison, random networks corresponding
to all pMENs were generated using the Maslov-Sneppen proce-
dure (50) and keeping the numbers of nodes and links constant
but rewiring all of the links’ positions in the pMENs. A standard Z
or t test was employed to determine the significance of network
indexes between the pMENs and random networks and across
different experimental conditions. Finally, sample trait-based sig-
nificance (24) was defined and a Mantel test was used to examine
the relationships between the trait-based gene significance and
soil variables for understanding the importance of network inter-
actions in ecosystem functioning. More detailed information
about the Materials and Methods used in this study is provided in
the supplemental material.
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