How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents

Hendrik Poorter1, Andrzej M. Jagodziński2,3, Ricardo Ruiz-Peinado4,5, Shem Kuyah6, Yunjian Luo7,8, Jacek Oleksyn2,9, Vladimir A. Usoltsev10,11, Thomas N. Buckley12, Peter B. Reich9,13 and Lawren Sack14

1Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; 2Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kornik PL-62-035, Poland; 3Department of Game Management and Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 73c, Poznan PL-60-625, Poland; 4Departamento de Selvicultura y Gestión de Sistemas Forestales, INIA-CIFOR, Avda. A Coruña, km 7.5., Madrid 28040, Spain; 5Sustainable Forest Management Research Institute, University of Valladolid-INIA, Madrid, Spain; 6Jomo Kenyatta University of Agriculture and Technology (JKUAT), PO Box 62000, Nairobi 00200, Kenya; 7Department of Ecology, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China; 8State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; 9Department of Forest Resources, University of Minnesota, 1530 Cleveland Ave N, St Paul, MN 55108, USA; 10Ural State Forest Engineering University, Sibirskiy Trakt 37, Ekaterinburg 620100, Russia; 11Botanical Garden of Ural Branch of Russian Academy of Sciences, ul. Vos’mogo Marta 202a, Ekaterinburg 620144, Russia; 12IA Watson Grains Research Centre, Faculty of Agriculture and Environment, The University of Sydney, 12656 Newell Highway, Narrabri, NSW, Australia; 13Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia; 14Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA.

Summary

- We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots.
- We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups.
- Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs.
- These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio.

Introduction

A plant’s organs serve multiple distinct functions. For example, leaves provide sugars, stems and branches position the leaves in an advantageous light environment and transport water as well as nutrients, and roots acquire water and nutrients and anchor the plant. For a species to achieve optimal performance at the whole-plant level, there has to be a certain proportionality among these functions, as all are essential for growth and reproduction. This proportionality depends in part on the relative amounts of mass present in these organs. Although various terminology has been used (Reich, 2002), the generic term we will use throughout this paper to describe how the biomass of one organ relates to that of another or of the whole is ‘biomass distribution’. Note that this should not be confused with dynamic allocation of newly fixed photosynthates to different organ systems, as the realized biomass distribution at any moment is the cumulative result of dynamic carbon (C) allocation over time and loss rates of mass among organs throughout its life. In this study, we focus on the relationship of biomass distribution to plant size and its variation among species.

Biomass distribution has been studied using two basic approaches. The first approach employs an allometric analysis. It focuses on how the absolute size of an organ (or its physiological
rate) relates to the total size of the organism or another organ, as these sizes or rates may change during development or across species. These relationships are often well described by a power law of the form:

\[Y = aX^b \]

Eqn 1

where \(X \) could be, for example, the mass of an individual of a given species, and \(Y \) the mass of a specific organ. Parameter \(a \) is the 'allometric constant' and \(b \) the 'scaling exponent'. Early researchers including Snell (1892) and Dubois (1897) observed that across species the relationship between brain mass and whole-organism mass was characterized by a scaling exponent of \(\frac{3}{4} \). Pearseall (1927) applied Eqn 1 to analyse relationships between different plant organs during development, and showed the scaling exponent \(b \) to be mathematically equivalent to the ratio of the relative growth rates of organs \(X \) and \(Y \) (Huxley, 1932). Further work showed strong allometric trends in animals for metabolic rate (e.g. whole-organism respiration rate) against body mass, with an apparently stable scaling exponent of \(\frac{3}{4} \). Makarieva et al. (Kleiber, 1932; but see Makarieva et al., 2008). Although correlation coefficients or \(r^2 \) values were not commonly reported in the time of Kleiber, it was already obvious that Eqn 1 explained a great deal of the variation in the biological traits considered.

West et al. (1997) proposed an intriguing biological model unifying allometric observations in plants and animals in what is now called ‘metabolic scaling theory’ (MST; see Table 1 for an explanation of the acronyms used). This theory suggested a central role for the vascular transport system of water in the case of plants and of blood or air in the case of animals. It involved a number of assumptions, of which the optimization of the fractal-like design of the vascular transport system is the most important, and predicted constant scaling exponents (such as \(\frac{3}{4} \) for metabolic rate vs size) across large ranges of plant size, often with quarter-powers. Niklas, Enquist and co-workers further developed the MST to include relationships between plant parts in across-species comparisons, again predicting fixed exponents with quarter-powers (e.g. Enquist & Niklas, 2002a; Niklas, 2004; McCarthy et al., 2007). Combining MST with a number of assumptions regarding the lengths, diameters and mass densities of stems and roots, these authors predicted that the scaling of leaf vs stem, leaf vs root and stem vs root mass would follow constant scaling exponents of \(\frac{3}{4} \), \(\frac{3}{4} \) and 1.0, respectively (Enquist & Niklas, 2002a). We will refer to this model as the MST1 model. The predicted relationships were apparently supported by the high \(r^2 \) of fixed power laws fitted to compiled data sets of \(c. 400–700 \) records (the number depending on the publication), combining data for \(c. 250–300 \) vascular plant species ranging from small herbs grown in the laboratory to adult trees from various forests and plantations around the world (Enquist & Niklas, 2002a; Niklas, 2004).

Niklas & Enquist (2002) therefore concluded that ‘a single biomass allocation pattern for leaf stem and root construction appears to hold sway across all extant seed plants.’

In a deviation from the MST1 model, Enquist & Niklas (2002a,b), Niklas (2004) and Enquist et al. (2007) suggested that \(\frac{3}{4} \) scaling does not apply to ‘small’ plants, and that isometric scaling was expected for such plants (i.e. \(b = 1.0 \)). Various biological reasons were proposed for this change, including a disappearing effect of seed mass (Enquist & Niklas, 2002a,b), stem photosynthesis being only present in young plants (Enquist & Niklas, 2002b), the onset of secondary thickening in plants older than 1 yr (Niklas, 2004) and changes in gravity and volume-filling architecture with age (Enquist et al., 2007), although these effects were not verified. In their series of papers, these authors argued for a binary contrast with an abrupt shift of the scaling exponent from 1.0 to \(\frac{3}{4} \), at a transition point that was variously defined as 1 yr of age (Enquist & Niklas, 2002a), or of 1 g (Enquist et al., 2007) or 64 g of total dry mass (Niklas, 2004). We refer to this model as the MST2 model.

A second way to analyse biomass distribution is to express the biomass of individual organs as a fraction or proportion of the total organisinal biomass present at a given time (leaf mass fraction (LMF); stem mass fraction (SMF); root mass fraction (RMF)). These proportional biomass distribution patterns have been used to analyse responses of given genotypes to a range of environmental conditions, to examine ontogenetic trends over time and to compare performance across species, and they are fundamental to models that analyse growth rates of plants to reveal the underlying components (e.g. Evans, 1972; Poorter et al., 2013). We will refer to this method as ‘clasmometry’ (measuring fractions) to distinguish it from allometry. Clasmometry is simpler than allometric analyses because biomass fractions can be

Table 1 List of abbreviations of concepts and variables used here

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full name</th>
<th>Elucidation</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST</td>
<td>Metabolic scaling theory</td>
<td>A model explaining scaling relationships between biological variables among (groups of) plants or animals</td>
<td></td>
</tr>
<tr>
<td>FEM</td>
<td>Functional equilibrium model</td>
<td>The concept that plants invest relatively more biomass in the organ that limits growth most</td>
<td></td>
</tr>
<tr>
<td>LMF</td>
<td>Leaf mass fraction</td>
<td>Leaf dry mass/total plant dry mass</td>
<td>g g(^{-1})</td>
</tr>
<tr>
<td>SMF</td>
<td>Stem mass fraction</td>
<td>Stem dry mass/total plant dry mass</td>
<td>g g(^{-1})</td>
</tr>
<tr>
<td>RMF</td>
<td>Root mass fraction</td>
<td>Root dry mass/total plant dry mass</td>
<td>g g(^{-1})</td>
</tr>
<tr>
<td>pLMF</td>
<td>Percentile rank of LMF</td>
<td>The percentile rank of an LMF observation relative to all data in the database, after correction for size-related differences</td>
<td>%</td>
</tr>
<tr>
<td>pSMF</td>
<td>Percentile rank of SMF</td>
<td>As pLMF, but for an SMF observation</td>
<td>%</td>
</tr>
<tr>
<td>pRMF</td>
<td>Percentile rank of RMF</td>
<td>As pLMF, but for a RMF observation</td>
<td>%</td>
</tr>
<tr>
<td>SLA</td>
<td>Specific leaf area</td>
<td>Leaf area/leaf dry mass</td>
<td>m(^2) kg(^{-1})</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf area index</td>
<td>Total leaf area/total ground area</td>
<td>m(^2) m(^{-2})</td>
</tr>
</tbody>
</table>

© 2015 The Authors

New Phytologist © 2015 New Phytologist Trust
computed directly for each plant, which avoids the assumptions inherent in fitting Eqn 1 to data for all plants combined. Although the resulting biomass fractions do not account directly for variation in body size (Packard & Boardman, 1988), it is straightforward to do so, by plotting biomass fractions against plant size, in effect achieving a similar goal as in an allometric analysis of biomass distribution (Poorter & Sack, 2012). Especially for trees, where individuals may grow through 10 orders of biomass, size is thought to be an important determinant of biomass fractions, as proportionally more biomass has to be invested in support tissue as plants grow larger (Coleman et al., 1994). Biomass fractions are often interpreted in terms of the functional equilibrium model (FEM; sometimes referred to as optimal partitioning theory), which states that plants change the proportion of leaves, stems and roots depending on the relative limitations of light, CO₂, water and nutrients on the physiological activity of the various organs (Brouwer, 1963; Davidson, 1969; Bloom et al., 1985). The FEM principles have been explicitly represented within teleonomic (goal-directed) models in which biomass distribution among organs is adjusted during growth such that growth rate is maximized (Thornley & Parsons, 2014). Although the FEM was specifically designed to explain the response of plants to their environment, it can also be applied to plants during ontogeny (Brouwer, 1963; Buckley & Roberts, 2006a), or to the comparison of species with different physiological activities (Buckley & Roberts, 2006b).

Most previous papers on biomass distribution focused on either allometric or clasmometric analyses, but not on both. However, these provide two essential and complementary perspectives on the same phenomenon (Poorter & Sack, 2012), and in this paper we take both approaches. We focus on two related questions. First, combining all data within and across species for a ‘general’ allometry, how does plant biomass distribution shift with increasing plant size? Coordinated changes of organ sizes are reflected in the value of the scaling exponents. If MST is correct and the scaling exponents are fixed over the entirety (MST1) or a large part (MST2) of the size trajectory, this implies that the development and evolution of plant form and function are remarkably constrained. A constant scaling exponent of ⅓ for leaf vs stem and leaf vs root scaling, as predicted by MST, means that, for every 1.0% increase in stem and root biomass, leaf biomass will increase by 0.75% across the whole plant size range considered. According to that theory, the relative growth rates of leaves, stems and roots would remain strictly proportional both during development across plant size and during evolution across a wide range of lineages. An alternative hypothesis is that plants adjust their biomass distribution more flexibly, so that scaling exponents change dynamically with plant size to improve performance. For animals, variation in the scaling exponent b has been reported by Makarieva et al. (2008) and Kolokotrones et al. (2010), for example, who showed that, even for Kleiber’s law (the well-recognized relationship between metabolic rate and body size), b was not a constant, but varied with animal type and generally decreased with size. It is clear that with increasing size plants generally show continuously increasing SMF and decreasing LMF, and less pronounced changes in RMF (Poorter et al., 2012). A further objective of this study, therefore, was to determine how these shifts in biomass fractions during plant growth are reflected in the allometric scaling exponents.

Our second question is how does biomass distribution vary across species groups, independently of the overall trends with plant size? While biomass fractions might shift greatly with plant size, there is also large variation among species at a given plant mass, and our aim was to quantify the major patterns underlying that variation. Although this question has received much less attention in the plant literature so far, previous analyses have shown that woody gymnosperms invest relatively more in leaves and less in stems than woody angiosperms (Körner, 1994; McCarthy et al., 2007; Reich et al., 2014) and herbaceous eudicots have higher LMFs and lower RMFs than herbaceous monocots (Poorter et al., 2012). Hui et al. (2014) showed that, in Chinese forests, RMFs differed among families, with low values for Cupressaceae and high values for Ulmaceae. However, no previous study has made a systematic, phylogenetically ordinated analysis across the plant kingdom. As size has such a strong effect on biomass distribution patterns (Poorter et al., 2012), rather than considering the variation among species in their absolute values for biomass fractions per se, we determined the deviations of biomass fractions from the main size-related trends. We subsequently used allometry to analyse more specifically which of the organ relationships are affected.

To answer these questions, we compiled a database of unprecedented size and generality, with >11,000 records on leaf, stem and root dry mass for c. 1,200 species from all five continents. We analysed the relationships between individual plant parts as well as differences in biomass fractions, and tested specifically whether allometric exponents are fixed in relation to plant size across ontogeny and evolution, or whether there is evidence for dynamic scaling, and how biomass fractions vary among lineages and functional groups, and which organ allometries can explain these differences.

Materials and Methods

Data collection

We compiled an extensive database of biomass values for leaves, stems, and roots for a broad range of species and conditions, for gymnosperm and angiosperm species grown in growth chambers and glasshouses, outside in an agricultural setting or under natural conditions. Data from experiments where plants were subjected to various environmental conditions were taken from the MetaPhenomics database (Poorter et al., 2010), and supplemented with a range of literature data focused on species comparisons (e.g. Swanborough & Westoby, 1996; Taylor et al., 2010) or from any other experiment we found in the literature where plants were grown and where leaf, stem, and root mass values were reported separately. We did not include genetically modified organisms or plants treated with herbicides, hormones, and/or heavy metals, which may have led to substantial deviations from typical physiology and biomass distribution. To avoid ambiguous interpretations of individual plant size, we excluded...
clonal plants for which the biomass of all ramets together was reported. Finally, because biomass distribution patterns in herbs can change strongly when plants become reproductive, we included herbaceous plants only in the vegetative stage. Because we were interested in the effect of size on biomass distribution, we included data from various harvests, if reported. For each genotype and species, we collected the mean values of leaf, stem, and root mass per harvest, where the number of plants harvested generally was in the range of three to eight individuals.

The data for field-grown plants comprised mainly shrubs and trees, where individuals are more easily distinguishable than in herbaceous plants. This is important as we used individual plant size as a relevant variable in the analysis. Data were included from large data compilations from the Western scientific literature (Cannell, 1982), the Eastern European literature (Usol’tsev, 2013 and Chinese papers and reports (Luo et al., 2014). These literature compilations were supplemented with original data collected for a range of species from C-accounting initiatives (Montero et al., 2005; Kuyah et al., 2013; A. M. Jagodzinski et al., unpublished) and governmental reports, as well as primary literature on field-grown plants (e.g. Ovington & Olson, 1970). In cases where biomass data were provided per ground area rather than per tree, we calculated values for the average tree, using the reported tree density. Following Niklas & Enquist (2002), we ignored the reproductive biomass in these trees, which – if present – generally forms a relatively small fraction of total biomass (0.03–1.2%: Cannell, 1982). References for all publications from which data were taken are given in Supporting Information Table S1.

The various assumptions related to data quality and representativeness are discussed in Notes S1. Species names were checked with the Taxonomic Name Resolution Service (Boyle et al., 2013). In total, there are 11 217 records for 1207 species reported in 1366 papers or scientific reports. A full list of references is given in Table S1. The actual biomass data can be found in Table S2.

Data analysis

Inspection of the allometric plots showed five out of the >11 000 records to deviate strongly from the others. They were removed from the analysis. For the establishment of overall general trends all other data were included, such that the trajectories of variables with size combine intra- and interspecific variation. Allometric relationships were first analysed with standard major axis (SMA) lines fitted to log-transformed data, as predicted by MST to explain the relationships. We subsequently fitted quadratic or cubic polynomials in stepwise Model 1 regression analysis and checked which model was best supported using the Bayesian information criterion and analysis of residuals. Two different approaches were used for assessment of the changes in slope with plant size. First, we calculated the derivative of the fitted polynomial equation. This is a somewhat rigid approach, always yielding a straight line in the case of a second-degree polynomial. We also applied a procedure that allows more flexible relationships, first determining the slope over small intervals and subsequently smoothing the resulting data with a polynomial (Poorter, 1989). Hence, we divided all data into 50 size classes, based on total plant dry mass. For each size bin we determined the median value of log-transformed leaf, stem, and root mass, and used these median mass values to calculate the slope (difference in biomass of organ A/difference in biomass of organ B) over each adjacent triplet using a central derivative kernel. That is, the slope over each three neighbouring classes was determined from the values of the left and right class and this value was assigned to all three class members. The procedure was then reiterated shifting the triplet one bin to the right. This eventually leads to three slope estimates per class, which were averaged, plotted as a function of total plant mass and smoothed by a Loess curve (Efron & Tibshirani, 1994). The median values and 95% confidence intervals (CIs) of this Loess curve were derived after a bootstrapping procedure with 20 000 repetitions (Efron & Tibshirani, 1994). Apart from increased flexibility, the advantage of this second approach is that the results are not constrained by the a priori choice of an equation to fit the data.

For the assessment of species-specific deviations from the overall trends of biomass distribution with plant size, we again used the 50 size classes. All observations of LMF (or SMF or RMF) within a given size class were ranked and characterized by percentiles. In this way, we corrected for the overall effect of size on mass fractions. The use of percentiles was inspired by the fact that LMF values were more variable for small than large plants. All percentiles (indicated in this paper as pLMF, pSMF and pRMF) calculated for a given species across the 50 size bins were subsequently combined. For each species, the median percentile was then calculated and the significance of deviations from the overall median (50%) was tested using a t-test.

All data were analysed using R software (R Core Team, 2014). Phylogenetic analyses were conducted with package Diversitree (FitzJohn, 2012) from the R software, using the phylogenetic tree published in Zanne et al. (2014). In the Diversitree package, only one value per species is used in the calculations, so we used the median response across all records for a given species for the analysis, as specified earlier. For this analysis we only considered those species for which at least four records were present in the database. Because c. 20% of the species in our data set were not covered by the phylogenetic tree used, we also examined whether there were systematic differences at the family level. For this analysis, we only considered those families that were represented by at least four species and at least four observations per species. Differences between (groups of) species were tested statistically by Welch’s t-test or ANOVA.

Results

Fixed or dynamic scaling exponents

Our database contained >11 000 records, including c. 3000 for herbaceous species and c. 8200 for woody species, and representing c. 1200 species in total. More detail is given in Table S3. With plant dry mass varying from <1 mg for 1-wk-old seedlings (e.g. Erica cinerea) to over 14 000 kg in >100-yr-old trees...
(Trilepisium madagascariensis), the database included plant size over > 10 orders of magnitude. Straight lines fitted to the log-transformed leaf vs stem, leaf vs root and stem vs root biomass data had \(r^2 \) values up to 0.988 (Table 2a; for separate regressions on herbaceous and woody species, see Table S4), although examination of residuals (Fig. S1) showed clear patterns that reject the use of log-linear allometry to describe this data. Ignoring this problem, the value for the leaf vs stem scaling exponent was 0.74, very close to the \(\frac{3}{4} \) predicted by MST, whereas both the leaf vs root (0.85) and stem vs root (1.15) scaling exponents were clearly and significantly (\(P < 0.001 \)) higher than those expected from the MST1 and MST2 models (post-transition point). Statistical analysis showed that a quadratic curve was more appropriate to fit the data for leaf vs stem and leaf vs root scaling, whereas a cubic polynomial was more suitable for the stem vs root scaling. This was confirmed by stepwise regression (\(P < 0.001 \) in all cases for the additional terms), by evaluation of the Bayesian information criterion (Table 2b), and by inspection of the residuals (Fig. S1) even though the increase in \(r^2 \) was small. These analyses clearly rejected the MST1 and MST2 models, which assumed single log-linear relationship with fixed exponents, in favour of leaf vs stem, leaf vs root and stem vs root biomass allometries that shift continuously and substantially with plant size (Fig. 1a–c).

We determined the actual values of scaling exponents and how they changed with plant size in two ways: by calculating the derivative of the fitted polynomials and by smoothing locally determined slopes. The two approaches yielded similar conclusions: both leaf vs stem and leaf vs root scaling slopes were significantly higher than \(\frac{3}{4} \) for plants smaller than 10 and 1000 g, respectively, and both slopes were significantly lower than \(\frac{3}{4} \) for trees exceeding 10 and 100 kg (Fig. 1d,e). We thus found no indication of a constant scaling exponent across the size range considered. Our data contradicted the MST2 model both qualitatively, in that the shifting appeared continuous rather than discrete as predicted by MST2, and quantitatively, in that the exponents differed numerically from the values predicted by MST. While for young plants the scaling exponents involving leaf mass were close to 1.0, as shown by the 95% CI in Fig. 1(d,e), for large plants the exponents declined to values substantially below \(\frac{3}{4} \). Stem vs root scaling did not comply with the MST2 model either. Although we found values close to 1.0 for very small and large plants, plants of intermediate size had a scaling exponent of up to 1.2 (Fig. 1f). Overall, there was only a small interval of plant size during which quarter-power scaling or, for that matter, any single scaling coefficient was observed.

Thus, rather than a fixed allometry, we found small plants to show scaling coefficients of 1.0, whereas plants of intermediate sizes show disproportionate increase in stem biomass distribution, and very large plants increase stem and root mass in equal proportion. These changes were also clearly reflected in the clasticometric analysis. The overall trends in how biomass fractions changed with size, shown as lines in Fig. 2, indicate that, up to 100 g total plant mass, the median RMF remained remarkably stable, with roots representing c. 30% of total plant mass, but that LMF declined from c. 0.50 to c. 0.30 over that range, while SMF increased from c. 0.20 to c. 0.40. Above a size of 100 g, where almost all records in the data set pertain to woody plant species, the changes in biomass distribution are yet more pronounced: the RMF drops from c. 0.30 to c. 0.20, the average LMF decreases to 0.015 for very large trees, and SMF strongly increases up to c. 0.80. Above 1000 kg, stem and root mass fractions seem to stabilize.

Differences in biomass distribution among lineages and functional groups

Subsequently, we tested the extent to which phylogeny affected these biomass distribution patterns, focusing on the deviation for each point from the main trends in median mass fractions as measured by percentiles (pLMF, pSMF and pRMF). Species explained 55% and families 23% of the total variation in pLMF across all observations. For pLMF, the full phylogenetic tree at the species level is shown in Fig. S2, and a summary at the family level is given in Fig. 3. There is a clear phylogenetic signal in the gymnosperm families Pinaceae and, to a lesser extent, Cupressaceae, which have a higher LMF than average for their size. Further detail is shown in Table 3, where the observed ranges in pLMF, pSMF and pRMF are given for these families. Another clear contrast is that herbaceous graminoids (Cyperaceae and Poaceae) show relatively high fractions of biomass in roots compared with other monocots and eudicotyledonous herbs of similar size. Several eudicot families with large numbers of species also deviated significantly and consistently in biomass distribution. The most notable ones are listed in Table 3 and include the Fabaceae, Proteaceae and Solanaceae.

Although we found broad phylogenetic patterning at the clade or family level, there was interesting variation below the family level as well. For example, in the case of the gymnosperms, which were found to have a relatively high LMF (Fig. 4a), the
Fig. 1 (a–c) The allometric relationship for (a) leaf vs stem mass; (b) leaf vs root mass; (c) stem vs root mass. Red and blue points represent data for woody (n = 8170) and herbaceous (n = 2960) species, respectively. The bold black lines show the overall fit of a quadratic (a, b) or cubic (c) regression. Numbers indicate the value for the slope of the line at the indicated white points. (d–f) The slope of the allometric relationship for (d) leaf vs stem mass; (e) leaf vs root mass; (f) stem vs root mass, all as a function of total plant dry mass. The bold lines indicate the Loess curve through the mean slope values, based on a bootstrap procedure with 20,000 repetitions. The shaded area indicates the 95% confidence interval of the slopes. The black dotted line indicates the value of (d, e) ¾ and (f) 1.0, as predicted by MST1 theory. lin, linear; qua, quadratic; cub, cubic.
Research 7

Species of the basal angiosperms and the eudicots (Fig. 4a). In these lineages the higher pLMF of the evergreens corresponded to both a lower pSMF ($P < 0.05$) and a lower pRMF ($P < 0.001$) than deciduous species. The difference for the angiosperms was found for both the tropical/subtropical species ($P < 0.01$) and for the temperate/boreal trees ($P < 0.05$). Inspection of the deviations from the overall allometric plots among specific organs showed that differences among functional groups were attributable to modulation of the leaf vs stem scaling and leaf vs root scaling, but that the stem vs root scaling showed very little group differentiation (Fig. S3).

A third contrast we investigated was between herbaceous C_3 and C_4 species. C_4 species are thought to have a superior photosynthetic rate on average than C_3 species, and, based on the FEM framework, such a higher photosynthetic rate might be expected to drive preferential biomass distribution in the root system. However, no difference was observed between C_3 and C_4 species in pLMF or pRMF within the monocotyledonous clade (Fig. 4). For the eudicotyledonous clade, RMF was lower for the C_4 species, but the number of C_4 species in the analysis (five) is still very low. Clade was an important factor in the contrast between annual and perennial herbs. Whereas no overall difference was found within the monocotyledonous clade (data not shown), the eudicotyledonous annuals had higher investment in leaves and stems as compared with perennial species of the same size (Fig. 4). Further analysis by means of allometry showed that, in contrast to the woody species, functional herbaceous groups varied significantly in the stem vs root scaling exponent (Fig. S3).

Discussion

The implication of high r^2 in allometric relationships

Our database covered >10 orders of magnitude in plant size, which is almost the full range of sizes of vascular plants in nature. Missing only is one additional order of magnitude for exceptionally large trees such as *Sequoiadendron*, which can reach 500 000 kg (Zinke & Stangenberger, 1994). All of the allometric relationships analysed showed very high r^2: whether we fitted linear or more complicated curves to the log–log data, all r^2 values exceeded 0.975. Given that ecological correlations often have r^2 values substantially lower than 0.50 (Møller & Jennions, 2002), scaling theory has therefore been considered to provide a ‘general’ biological law, which is quite an exceptional phenomenon in biology (Dhar & Giuliani, 2010). Further, the high r^2 values of log–log fits also led to the inference that fixed exponent allometric equations could explain biomass distribution to a large extent. For example, McCarthy *et al.* (2007) suggested that one could explain 97–99% of the variation in biomass distribution across the plant kingdom world-wide if one could accurately determine the allometric constant and scaling exponent of Eqn 1. However, as emphasized in general by Nee *et al.* (2005) and exemplified in Notes S2 for the specific case of allometric relationships among organs, the r^2 value must be interpreted with care when the underlying data span orders of magnitude. This is because r^2 is mathematically determined to increase directly with the size

Fig. 2 (a) Leaf mass fraction (LMF); (b) stem mass fraction (SMF) and (c) root mass fraction (RMF), plotted as a function of total plant dry mass. Red and blue points represent data for woody ($n = 8170$) and herbaceous ($n = 2960$) species, respectively. The bold line is a Loess curve fitted through the mean values of the 50 consecutive size classes that were discerned (see the Materials and Methods section for an explanation). The r^2 indicates how much of the overall variation in the data is explained by the Loess curve.

needle-leaved deciduous species (*Larix, Metasequoia,* and *Taxodium*) had low values for pLMF relative to the needle-leaved evergreen species (Fig. 4a; $P < 0.01$). These differences were mirrored in pSMF ($P < 0.01$), with far less divergence in pRMF. Contrasting biomass distribution patterns for deciduous vs evergreen species are also present within the angiosperms: evergreens had higher pLMF than deciduous species among the woody species of the basal angiosperms and the eudicots (Fig. 4a). In
range over which the variables are considered, regardless of the strength of the proportionality of the variables or the precise shape of the relationship. Thus, r^2 has very limited value for inferring the structure of relationships across scales. Indeed, even if the shoot and root system of plants were to show high variability in biomass distribution patterns, that is, if RMF values ranged between 0.01 and 0.99 (and thus, shoot to root ratios were confined between 0.01 and 99), the r^2 of the relationships between log-transformed shoot and root biomasses would still be $c. 0.94$ or higher (Notes S2). Hence, the fact that an allometric equation ‘explains’ $c. 97\%$ of the variation in log-transformed shoot and root mass according to its r^2 does not imply that the equation is highly informative, nor does it necessarily indicate a biological law that extends beyond the conclusion that plants or species with a larger root mass are highly likely to have larger shoot mass as well. Moreover, it follows that, in comparing linear vs curved allometric relationships, a high r^2 for the linear relationship does not necessarily imply that curvature is nonexistent or that it would add only marginal insight or predictive value. In short, the r^2 value of an allometric model spanning many orders of magnitude of size says little about the accuracy of the model’s assumptions, and it does not automatically support a constant scaling exponent. As discussed later, the clasmometric approach is better suited for drawing inferences about the strength of relative proportionality of organs, because it eliminates the dependence on absolute scale that leads to spurious inflation of r^2 values in the allometric approach.

The value of the scaling exponent

Ignoring at first the dynamic scaling relationships that were best supported by the data, and focusing on the log-linear allometric relationships (Table 2), we found slopes to be very similar to those reported by Niklas (2004) for his data set with actual biomass observations. As our database contains 15-fold more data than considered by Niklas (2004), we conclude that the calculated slopes are likely to be stable approximations for the log-linear fits across all plants. As a result of our considerably higher degrees of freedom, however, we found much smaller CIs around the fitted coefficients. Consequently, none of the $\frac{3}{4}$ or 1.0 values forecasted by the MST models for the scaling exponent were within the 95% CIs, although in the case of leaf vs stem scaling the estimated slope was close to the predicted $\frac{3}{4}$. Thus, just as inclusion of $\frac{3}{4}$ in the 95% CI has previously been used to support the MST model, the much narrower CIs in our data set can be used to formally refute the model. More importantly, however, we found no indication that the scaling exponent was constant in any of the three relationships (Fig. 1; Table 2). We are the first – to our knowledge – to show this for an extended data set on plant organ mass. However, dynamic exponents have also been observed in other fields of biology: Kolokotrones et al. (2010), for example, found that for the relationship between metabolic rate and animal size the scaling exponent b decreased monotonically with size, and changing exponents were also reported in the scaling of tree respiration with tree size (Cheng et al., 2010).
Table 3 The median percentile rank in leaf mass fraction (pLMF) per family averaged over all species measured for that family

<table>
<thead>
<tr>
<th>Family</th>
<th>≥ 4 observations per species</th>
<th>≥ 1 observation per species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median pLMF</td>
<td>No. of species</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Aceraceae</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Fagaceae</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Poaceae</td>
<td>34</td>
<td>83</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>Betulaceae</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>59</td>
<td>29</td>
</tr>
<tr>
<td>Pinaceae</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>66</td>
<td>21</td>
</tr>
<tr>
<td>Moraceae</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td>Cupressaceae</td>
<td>68</td>
<td>15</td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>69</td>
<td>9</td>
</tr>
<tr>
<td>Arecales</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>70</td>
<td>31</td>
</tr>
<tr>
<td>Brassicaceae</td>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>79</td>
<td>8</td>
</tr>
<tr>
<td>Cannabaceae</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>Proteaceae</td>
<td>81</td>
<td>12</td>
</tr>
</tbody>
</table>

pLMF values per species are considered over all size classes present in the database. The analysis was carried out with emphasis either on the quality of the estimate per species (at least four independent records available per species) or on the number of species (only one observation per species necessary for the species to be included). Data are most robust if they are derived by a t-test. Listed are only those families with a significant deviation in this respect. ns, nonsignificant (P > 0.10); +, 0.05 < P < 0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001).

What is the overall pattern of how these scaling exponents change with size, and how could this pattern be explained from a functional perspective? Our data set, like those of others (Enquist & Niklas, 2002a; Niklas, 2004), represents a mixture of younger and older plants. It therefore includes both comparisons across ontogenetic stages for individuals of given species, and comparisons among species, thus representing evolutionary shifts in biomass distribution across species of different size. This does not invalidate our data set as a test for MST, because the arguments about size-related changes in organ structure and function used by MST to predict invariance of scaling exponent b across species (i.e. in the evolutionary domain) would apply at least as well within species (i.e. within the ontogenetic domain) as across species. Thus, a fixed scaling exponent of ¾, as suggested by MST1, would imply a completely fixed developmental pattern throughout the vegetative stage. MST2 predicts a slightly different relationship in which scaling slopes are unity for young small plants but then quickly adjust to the values predicted by MST1 at some transition point during development. Although plants < 1 g indeed show relatively fixed scaling exponents close to 1.0, plants that achieve a size of 1–10 g begin to adjust their scaling exponents gradually, with an increasing fraction of biomass in stems (Fig. 2). Most data for larger plants are from trees growing in plantations or natural forests. In the case of stands with equally sized individuals, the amount of light, nutrients and water available to an individual are directly affected, and probably restricted, by neighbours. Because these neighbouring trees limit horizontal crown expansion, increasing leaf mass will generally manifest as increased leaf area per unit ground area (LAI). Because very little light remains to be intercepted when LAI exceeds a value of c. 3–5 (Ellsworth & Reich, 1993; Anten et al., 1995), there will be little photosynthetic return on new leaf area investment, making
more leaf area unprofitable for a given individual. Indeed, forests in that growth phase often reach a plateau in leaf biomass or may even decline in leaf mass (Ryan et al., 1997; Fernández-Martínez et al., 2014). Although the response of an individual tree may be different from that of a stand, the core assumption linking energy capture to biomass in MST – namely, that plant growth is always proportional to the leaf mass present (Price et al., 2010) – is clearly incorrect in closed canopies, where leaf biomass earns diminishing returns. However, competition for light necessitates further investments in stem growth, most importantly in height but also in diameter, for mechanical safety. Mechanical safety also necessitates additional root growth. Therefore, for competing trees whose lateral crown expansion is restricted by neighbours, we expect leaf biomass to saturate as the profitability of investments in leaves declines, with investments gradually shifting to stems and roots, and more so to stems as a consequence of the direct benefit of height growth per se for light competition (Dybzinski et al., 2011). These expectations were supported by our data set, for which we found a substantial decline in the leaf vs root and leaf vs stem scaling exponents with increasing plant size.

For trees over 10–100 kg, the strong prioritization of stem biomass distribution decreases somewhat, with stem vs root scaling returning to unity again. At the same time, the relative change in leaf biomass is at its lowest point, with scaling exponents decreasing to as low as 0.66. An explanation for these changes could involve the negative effect of height on water transport, which can lead to a limitation of stomatal conductance and thus photosynthetic rate and growth (Koch et al., 2004; Ryan et al., 2006; Steppe et al., 2011). These hydraulic factors, as well as increased requirements for mechanical stability, may also favour greater biomass distribution to roots in tall trees (Nicoll & Ray, 1996). Interestingly, a recent paper specifically modelled the architectural changes as well as the changes in hydraulics during ontogeny and predicted the metabolic scaling exponent to decrease to 0.64 for large trees (Smith et al., 2015). These hydraulic factors, as well as increased requirements for mechanical stability, may also favour greater biomass distribution to roots in tall trees (Nicoll & Ray, 1996). Interestingly, a recent paper specifically modelled the architectural changes as well as the changes in hydraulics during ontogeny and predicted the metabolic scaling exponent to decrease to 0.64 for large trees (Smith et al., 2015). Alternative explanations that are inconsistent with quarter-power scaling involve the influence of nutrient and/or water relations on coupled carbon, nutrient, and water scaling (e.g. Reich et al., 2006; Savage et al., 2010).

We formalized our ideas of the role that increased biomass distribution to stem biomass may play both in favouring light competition and in hindering water transport in a very simple mathematic model (Notes S3). Plants without constraints on and/or rewards for height growth show a constant, isometric biomass distribution throughout their life in this model. However, when the model is modified to reward height growth, biomass distribution shifts in favour of stems, with the stem vs root and leaf vs stem scaling exponents increasing and decreasing, respectively, as we observed in our data. A more sophisticated model that applied a teleonomic approach to more detailed descriptions of canopy physiology and included mechanical safety constraints (DESPOT; Buckley & Roberts, 2006b) gave similar predictions, with leaf vs stem and leaf vs root scaling declining during growth to 0.64 and 0.62, respectively. We do not suggest that either of these models captures all subtleties of the biology of biomass distribution, but they do demonstrate that allometric scaling exponents are very likely to change with plant size as a result of size-related changes in the return on investment in various organs. Moreover, as these allometric trends were predicted by developmental models, they apply equally well to comparisons in the ontogenetic and in the evolutionary domains. Together, these models and our data strongly contradict the MST predictions of constant scaling exponents, both empirically and theoretically. We conclude that all results and economic principles are consistent with scaling exponents that change dynamically with plant size.

Biomass distribution patterns as dependent on size

The virtue of the allometric analyses is that they determine relationships among traits, while implicitly accounting for size differences among plants. However, these analyses generally focus on the scaling exponent ‘b’ rather than the allometric constant ‘a’ (Glazier, 2010), and provide no insight into the specific values of biomass distribution variables (Poorter & Sack, 2012). Because the leaf vs stem and leaf vs root scaling exponents were < 1.0 over the full biomass range (Fig. 1d,e), it follows that larger plants will have monotonic declines in LMF values, which was indeed the case (Fig. 2a). However, whereas organ size explained > 98% of the variation in the organ allometries, size only explained 78%, 87% and 21% for LMF, SMF and RMF, respectively. The lower r² values in the clasmometric approach can be explained by the fact that the ‘autocorrelative’ effect of larger plants having larger organs is removed in this type of calculation. Part of the remaining variation is probably attributable to differences in environmental conditions, which are difficult to quantify for this data set, especially for availability of nutrients and water, or inherent variation within species. For the analysis of environmental effects the reader is referred to, for example, McCarthy & Enquist (2007), Poorter et al. (2012) and Reich et al. (2014).

The other part of the remaining variation will be attributable to differences among species. In the following paragraphs, we discuss the extent to which phylogeny and functional group explain overall variation in biomass distribution patterns. As size had such a large influence on biomass distribution patterns (Fig. 2; Coleman et al., 1994), we analysed the deviation of each record from the overall trends rather than considering the observed biomass fractions per se. Focusing on pLMF as a measure of the deviations from the median, we found clear phylogenetic differences (Figs 3, S2; Table 2), consistent with findings of previous work, but importantly extending the range of variation and the types of comparisons. We discuss next the most interesting and clear contrasts, for woody and herbaceous species separately.

Interspecific variation in woody species

One of the larger phylogenetic differences we found was that woody gymnosperms invest relatively more in leaves and less in stems than woody angiosperms (Fig. 3; Table 3), in accordance with conclusions of, for example, Körner (1994), McCarthy et al. (2007) and Reich et al. (2014), which were based on much
smaller data sets representing fewer lineages. Interestingly, the few deciduous gymnosperm species deviated markedly in biomass distribution pattern from the evergreen gymnosperms, indicated by their much lower pLMF and higher pSMF. A similar contrast in pLMF between deciduous and evergreen trees was also found in the woody angiosperms, for species characteristic of both tropical/subtropical and temperate/boreal habitats, and in both small- and large-sized individuals. Given that a much larger proportion of gymnosperm than angiosperm woody species are evergreen, it is likely that what was previously concluded to be a phylogenetic difference actually has a functional basis.

Considered over all species for which data on larger trees (> 100 kg) are present, the difference in actual LMF between the two functional groups is more than two-fold, with mean (± SE) LMF being 0.018 (± 0.0005) for the deciduous species and 0.046 (± 0.0009) for the evergreens. This divergence in LMF could be explained mechanistically by assuming a yearly, fixed allocation of sugars to leaves equal for all tree species, in combination with a much larger leaf turnover in the deciduous species, as a consequence of their two- to three-fold lower leaf lifespan. An alternative and potentially complementary explanation is that plants regulate LMF directly on the basis of the proportion of leaf, stem and root required, with allocation of sugars simply adjusted to that. The latter mechanism is consistent with pruning experiments with herbs, where LMF and RMF quickly recovered to original values after half of the leaf or root mass was removed (Brouwer, 1963; Poorter & Nagel, 2000). What could invoke such setpoints? An explanation at the system level would be based on the fact that forests in most regions of the world function with an LAI that differs little between deciduous and evergreen species (Iio et al., 2014). It is also known that, on average, the specific leaf area (SLA; leaf area per unit leaf mass) of evergreen woody species is 2–3 times higher than that of deciduous species (Poorter et al., 2009). Hence, all else being equal, the 2–3 times lower SLA in evergreens would have to be compensated by a 2–3 time higher LMF to arrive at the more or less similar LAI.

Our large database provides a basis for comparison of individual plant groups in future studies, as it allows discoveries of distinctive biomass distribution in given life forms and clades. As examples, we highlight findings for two groups of evergreen woody species. Our analysis showed that the arborescent palms form a functional group with an especially distinct biomass distribution pattern (Fig. 4). Woody palms are among the dominant species in large part of the tropics (Ter Steege et al., 2013) and are particularly well adapted to survive hurricanes, and one might therefore predict a particularly well-developed root system. However, the little information we were able to collect suggests instead that they have a high LMF, as do the other groups of evergreen species. Another surprise was the consistently high pLMF and low pRMF for Proteaceae, as these species generally come from light-exposed, dry and nutrient-poor areas, where large RMFs could be considered of survival value. It is possible that the ephemeral nature of their cluster roots (Lambers et al., 2006), that is, fast fine-root turnover, lead to their low RMF despite a potentially large fraction of photosynthates allocated to roots.

Interspecific variation in herbaceous species

We found a large contrast in biomass distribution within the herbaceous species between graminoids (Cyperaceae and Poaceae), which showed low pLMFs and high pRMFs, and herbaceous eudicots, which showed the reverse. This difference has also been observed in experiments where graminoids and herbaceous eudicots are grown under the same environmental conditions, and it is consistent with observations that grasslands generally show very high RMF (Jackson et al., 1996; Poorter et al., 2012). Because graminoids do not show secondary root growth, this may seem counterintuitive. Why do graminoids invest relatively strongly in root mass? One possible explanation is that graminoids must develop more roots from the shoot base to effectively explore the same root volume as eudicots. It has also been reported that roots of graminoids have lower protein concentrations and uptake rates of nitrogen per unit mass (Table 4). Thus, the higher RMF might be a compensation for a lower activity, although cause and effect could be reversed here as well. Other reasons are that graminoids may better survive grazing by quickly developing an extended well-anchored root system that resists the pulling forces of herbivores (Read & Stokes, 2006); that the storage of starch and nutrients in a larger pool of roots enables more retranslocation to new leaves after grazing or fire; or that grasses, by having less frequent associations with mycorrhizas (Van der Heyden et al., 2015), invest more in roots themselves.

A second contrast we analysed is between herbaceous C3 and C4 species. Insofar as C4 species are thought to have higher photosynthetic capacities than C3 species, high expectations are placed on introducing this mechanism in C3 species with the aim of boosting productivity (von Caemmerer et al., 2015). However, given that plants with a superior photosynthetic rate and high sugar availability may readjust their biomass distribution pattern by investing less in leaves and more in roots, the anticipated gains might partly disappear. In contrast, if C4 species

<table>
<thead>
<tr>
<th>Variable</th>
<th>Monocots</th>
<th>Eudicots</th>
<th>Difference (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMF (g ROOT g PLANT −1)</td>
<td>0.31 ± 0.01</td>
<td>0.26 ± 0.01</td>
<td>+20</td>
<td>*</td>
</tr>
<tr>
<td>[Root organic N] (mg g−1 ROOT)</td>
<td>30 ± 1.5</td>
<td>42 ± 1.3</td>
<td>−29</td>
<td>***</td>
</tr>
<tr>
<td>Net NO3 uptake rate (mmol g−1 ROOT d−1)</td>
<td>2.4 ± 0.3</td>
<td>3.9 ± 0.4</td>
<td>−40</td>
<td>**</td>
</tr>
<tr>
<td>Root respiration (mmol O2 g−1 ROOT s−1)</td>
<td>54 ± 2.6</td>
<td>64 ± 3.9</td>
<td>−16</td>
<td>*</td>
</tr>
</tbody>
</table>

This table shows a summary of the overall difference between 11 herbaceous monocot and 13 herbaceous eudicot species. All species were grown in a growth chamber under conditions of unrestricted water and nutrient supply. More details can be found in Poorter et al. (1991). The differences were tested at the species level with a Welch two-sample t-test. Data are mean values ± SE. Significance values: * P < 0.05; ** P < 0.01; *** P < 0.001. RMF, root mass fraction.
generally show reduced water loss compared with C₃ species, they could operate with a higher LMF and a lower RMF. However, comparing the overall biomass distribution between C₃ and C₄ herbs, we found evidence of neither scenario in the monocots, as there was no overall difference between C₃ and C₄ species. There is some indication for increased pLMF and decreased pRMF in the eudicots, but note that the number of C₄ species here is too small for a firm conclusion. We note, furthermore, that C₄ species have diverse backgrounds, and to better understand the evolutionary details, differences between C₃ and C₄ species need to be resolved within given lineages (Taylor et al., 2010).

A third noteworthy finding is for a specific family, the Solanaceae, which has exceptionally high pLMF and exceptionally low pRMF values. Many of these species as represented in the database have been bred for cultivation. Whether this has led to changed biomass distribution patterns, however, is still an open question (Milla & Morente-López, 2015).

Further analysis of the allometric relationships among the major organs showed that the relationship between stems and roots is generally very conserved in woody species. It is likely that herbs have more freedom to change the distribution, as the mechanics of support are less critical than for large trees.

Conclusions

Using the largest data set with which theories for plant biomass distribution have been tested, we found that plants strongly coordinate the relative sizes of leaves, stems and roots. However, our analyses rejected the ontogenetically fixed scaling exponents predicted by MST, and instead found dynamically shifting scaling exponents and biomass fractions with plant size. Furthermore, we found systematic differences in biomass distribution among species groups, with gymnosperms showing higher biomass present in leaves than angiosperm trees, and graminoids having higher biomass fractions in roots than nongraminoids. In both contrasts, these differences are likely to have a functional basis.

Acknowledgements

Many colleagues kindly opened their treasure trove of data for this project. Heinjo During, Carol Richards, Onno Muller and three anonymous reviewers commented insightfully on earlier versions of this manuscript. Will Cornwell introduced us to the Diversitree package for phylogenetic analysis. Y.L. acknowledges support of the Scientific Research Foundation for Talented Scholars, Yangzhou University (137010806), and the Strategic Priority Program of Chinese Academy of Sciences (XDA05050602). A.M.J. is thankful to the General Directorate of State Forests, Warsaw, Poland, for funding received for a research project ‘Carbon balance of the major forest-forming tree species in Poland’ (2007–2011). T.N.B. was supported by the US National Science Foundation (Award no. 1146514), the Australian Research Council (DP150103863 and LP130101183) and the Grains Research and Development Corporation.

References

Supporting Information

Additional supporting information may be found in the online version of this article.

Fig. S1 Residuals of the allometric relationships after fitting an SMD regression through log–log-transformed organ mass data.

Fig. S2 Phylogenetic tree of the Leaf Mass Fraction (LMF) data.

Fig. S3 Distribution of the deviations from the overall allometric log–log curves for various functional groups.

Table S1 Literature references on which the database is built

Table S2 Biomass data for leaves, stems and roots as well as biomass distribution patterns and deviations from the overall trends in biomass distribution as used in the current analyses

Table S3 Overview of the representation of various plant groups in the database

Table S4 Allometric scaling exponents as given for all records of all species, and for herbaceous and woody species separately

Notes S1 Methodological assumptions.

Notes S2 The inference value of r^2 in plant allometric analyses.

Notes S3 Explanation of a very simple model that shows dynamic scaling exponents as a consequence of physiological or environmental constraints.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.
New Phytologist Supporting Information

Article title: **How does biomass allocation change with size and differ among species?**
An analysis for 1200 plant species from five continents
Authors: Hendrik Poorter, Andrzej M. Jagodziński, Ricardo Ruiz-Peinado, Shem Kuyah, Yunjian Luo, Jacek Oleksyn, Vladimir A. Usoltsev, Thomas N. Buckley, Peter B. Reich, Lawren Sack
Article acceptance date: 15 June 2015

The following Supporting Information is available for this article:

Fig. S1 Residuals of the allometric relationships after fitting a SMA regression through log-log transformed organ mass data.

Fig. S2 Phylogenetic tree of the Leaf Mass Fraction (LMF) data.

Fig. S3 Distribution of the deviations from the overall allometric log-log curves for various functional groups.

- **Note S1** Methodological assumptions

Note S2 Inference value of r^2 in plant allometric analyses

Note S3 Explanation of a very simple model that shows dynamic scaling exponents as a consequence of physiological or environmental constraints.

Table S1 Literature references on which the database is built.

Table S2 Biomass data for leaves, stems and roots as well as biomass distribution patterns (LMF, SMF and RMF) and deviations from the overall trends in biomass distribution (pLMF, pSMF and pRMF) as used for the current analyses.

Table S3 Overview of the representation of various plant groups in the database.

Table S4 Allometric scaling exponents as given for all records of all species, and for herbaceous and woody species separately.
Fig. S1 Residuals after fitting a SMA regression through log-log transformed organ mass data. For clarity, the residuals are binned for the 50 size classes, and the median residuals for each size class are connected with a red line.
Fig. S2 Phylogenetic tree of the Leaf Mass Fraction (LMF) data. Data are based on the deviations of the LMF of each record from the median trend line (pLMF) as shown in Fig. 2a, expressed as percentiles and calculated per size class (see Methods). Note that a pLMF of 50 indicates that the species does not deviate from the median trend. The total number of species included is 482. The species colour indicates the average pLMF for that species, for explanation of the colour code see the legend of the figure.
Fig. S3 Distribution of the deviations from the overall allometric log-log curves for various functional groups for (a) Leaf mass vs. stem mass scaling (b) Leaf mass vs. Root mass scaling and (c) Stem mass vs. Root mass scaling. The overall allometric curves were first determined by a Loess fit, and for all observations the deviations from the fitted line were calculated and averaged over species. Species averages were then used to determine boxplots of the distribution of values per species. The boxplot indicates the 10th, 25th, 50th, 75th and 90th percentile. Wo.: woody; He.: herbaceous; Evg.: evergreen; Dec.: deciduous; Perenn.: perennial; Gymn.: gymnosperms; Angio.: angiosperms; Mono: monocotyledons; Eudico.: Eudicotyledons. Significance values indicate t-tests for significant deviation from 0, which indicates no deviation from the overall allometric curve. +, 0.05 < P < 0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001).
Note S1. Methodological assumptions

There were four important assumptions in our methodology, shared with previous studies. First, we assumed that differences among studies in how the whole plant was separated into leaf, stem and root would have only a small effect on the patterns analysed. Not all investigators followed exactly the same protocol, and not all described their specific protocol. Ideally, organs would be consistently defined by function; for example, leaf lamina, as the organ most active in photosynthesis, would ideally be consistently separated from petioles and, in grasses, from leaf sheaths, which mainly function to position the leaf blades in a favourable location and for water and sugar transport (Pérez-Harguindeguy et al., 2013 and references therein). However, in a number of reports petioles and/or leaf bases were included in the leaf fraction. We made a correction only in the case of palm trees, where leaves can be up to 8 meters long with petioles as thick as small branches of dicotyledonous trees (Corley & Tinker, 2003). In those cases we subtracted petiole and rachis from total leaf mass, using supplementary data of other publications as necessary. We also presumed that differences among studies in the separation of stems and roots would not have a strong effect on the analyses.

Our second assumption was that root mass was accurately measured. The extraction of roots from solid substrates can be challenging (Mokany et al., 2006). On the one hand, root mass can be overestimated if roots are not cleaned well enough of adhering soil particles; on the other hand, root mass is underestimated if not all roots are recovered. Based on sophisticated methods where the root diameter of various roots were taken into account, the fraction of unrecovered root mass or volume for a Pinus root system was estimated to be 17% in young plants but only 4% in older ones (Danjon et al., 2013; Chmura et al., 2013). The effect of such error would be relatively modest, though for large field-grown trees no estimates are available.

Third, we assumed that total plant biomass is a far more important driver for biomass distribution than the age or – for trees – the ontogenetic stage of a plant. Some studies focused on size-related changes within species, while others, especially in zoology, have focused on differences across species when measured at the adult reproductive stage. In plants, modular and indeterminate growth generates far more variability in size at any ontogenetic stage than in animals, and size imposes a variety of functional constraints. It is also a strong determinant in competition. We therefore decided to include both younger and older plants, as long as they matched the criteria given in Material and Methods. Ontogeny will be an important factor, especially when flowering occurs in monocarpic species. We therefore excluded all herbs as well as monocarpic woody species in the generative phase. Consequently, the overall database has both ontogenetic and interspecific components, and total plant size is considered to be the main driver.
Our fourth assumption was that the plants for each size class in the dataset constitute a representative subsample with respect to growth conditions, functional group, and phylogeny. That is, for all sizes of plants there are individuals grown at various environmental conditions (high/low temperature, nutrients, densities, etc.). Larger trees were only grown and harvested in the field, so we also assume that the mix of conditions for small trees (partly experimental, partly field) was not very different from those of larger trees (partly plantations, partly natural). Thus, we supposed environmental effects to be randomly and equally distributed over the full range of data, adding noise to the data set, but without driving any substantial systematic deviations.

References

Note S2. Inference value of r^2 in plant allometric analyses

Sensitivity analysis of the effect of a predefined range in Root Mass Fraction (RMF: fraction of Total Plant Mass (TM) invested in roots) on the explained variance (r^2) of the relationship between log(root mass) and log(shoot mass). The predefined ranges were chosen to be narrow from a biological perspective (0.4 < RMF < 0.6), realistic (0.07 < RMF < 0.7; as observed for the current data set based on the 0.5th and 99.5th percentile), very wide (0.01 < RMF < 0.99) and improbably wide (0.001 < RMF < 0.999). Each correlation was based on 20,000 random drawings as explained below. Overall variation in simulated plant mass was either 10 orders of magnitude, or 1 order of magnitude.

<table>
<thead>
<tr>
<th>Range in RMF</th>
<th>10^{10}-fold range in TM</th>
<th>10-fold range in TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40 – 0.60</td>
<td>0.999</td>
<td>0.886</td>
</tr>
<tr>
<td>0.07 – 0.70</td>
<td>0.982</td>
<td>0.170</td>
</tr>
<tr>
<td>0.01 – 0.99</td>
<td>0.941</td>
<td>0.011</td>
</tr>
<tr>
<td>0.001 – 0.999</td>
<td>0.932</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Simulations

To evaluate the meaning to be attached to the actual value of r^2 in allometric relationships, we simulated a population of plants with substantial variation in biomass, drawing randomly from a uniform distribution of log-transformed total plant mass, for a range that comprised 10 orders of magnitude in biomass. This is more or less similar to the current dataset. For each of these plants, root mass was then calculated, after simulating a Root Mass Fraction by randomly drawing from a uniform distribution with values ranging from – in the first scenario - 0.40 to 0.60. Shoot mass was then simply the difference between the mass of the total plant and the roots. We drew samples for 20,000 simulated plants in total, and subsequently calculated the r^2 of the allometric relationship between the log-transformed shoot and root mass for all 20,000 observations. The analysis was then repeated with three other scenarios with increasingly wider intervals for the RMF.

The compiled data showed very tight relationships between organs ($r^2 \geq 0.932$; see table above), and between each organ and total plant biomass ($r^2 \geq 0.992$). We analysed how such high r^2 values for the relationships between the biomass of two organs should be interpreted, and whether it permits the inference of a fixed scaling exponent, in principle. We simulated cases with various ranges in RMF. In the case of relatively narrow variation in RMF (0.40-0.60), we found that the allometric relationship yielded an r^2 higher than 0.99. However, when allowing
RMF to vary randomly across the range actually observed in our compiled dataset (99% of the cases were in the 0.07-0.70 range), the r^2 still exceeded 0.98. Only in simulations when the range in allocation became much larger than normally observed (0.01 – 0.99 or wider) was the $r^2 < 0.95$. Indeed, even if the shoot and root system of plants showed highly variable proportionality, that is when RMF ranged between 0.01 and 0.99 (and thus, shoot:root ratios were confined between 0.01 and 99), the correlation between log-transformed shoot and root biomass was still around 0.94 or higher. The high r^2s were predominantly due to the large range of biomass considered; the r^2 dropped dramatically with increasing range of RMF when the same allometric relationship is considered over one rather than ten orders of magnitude in plant size (Table above). Hence, the fact that an allometric equation “explains” ~97% of the variation in shoot and root mass according to its r^2, does not allow the inference of the central tendency of biomass allocation. Direct examination of the allometries, and potential shifts in the allometries are necessary to establish the central trend, and whether it is fixed or dynamic.
Note S3. Accounting for changes in the economics of C allocation during growth

The central features of the economics of plant carbon allocation are that the effect of C investment in any pool on growth must be saturating – i.e., growth rate G approaches a finite limit as C in any pool approaches infinity – and that the effects of each C investment on growth rate are not independent: if investment is high in one pool, this increases the return on investment in other pools due to their mutual influence on photosynthesis. Perhaps the simplest implementation of these features is

$$G \propto \left(\frac{c_s}{c_s + k_s} \right) \left(\frac{c_r}{c_r + k_r} \right) \left(\frac{c_l}{c_l + k_l} \right)$$

Apart from the saturation constants k_j, the carbon pools are indistinguishable in this model. When carbon allocation is optimised in this model (by modulating allocation over time, during growth, so that the marginal products for each pool remain equal: $\partial G/\partial c_s = \partial G/\partial c_r = \partial G/\partial c_l$), allocation is isometric:

![Graph showing allometric scaling exponents](image)

![Graph showing mass fractions](image)

(The lines for LMF and RMF have been shifted up by 0.01 and down by 0.01, respectively, to make them visible.) To capture what happens during height growth, we must incorporate the effect of height, which influences the economics of allocation to stems, roots and leaves differently. Suppose that height growth brings diminishing returns because its benefits for light capture are counteracted by its negative impact on water transport. This can be expressed qualitatively by multiplying G by a hyperbolic function of height analogous to the terms for the carbon pools:
where h is height. Height also depends on stem carbon. Supposing that height is proportional to the $2/3$ power of stem diameter as specified by buckling theory, and that stem carbon is proportional to the product of height and diameter, it follows that $h \propto c_s^{1/(1+1/(2/3))} = c_s^{2/5} = c_s^{\alpha/(\alpha+1)} = c_s^\beta$ where $\beta = \alpha/(\alpha+1)$ and $\alpha = 2/3$ and $\beta = 2/5$ nominally. Then

$$\frac{h}{h + k_h} = \frac{c_s^\beta}{c_s^\beta + k_h}$$

and

$$G \propto \left(\frac{c_s^{\beta+1}}{(c_s + k_s)(c_s^\beta + k_h)} \right) \left(\frac{c_r}{c_r + k_r} \right) \left(\frac{c_l}{c_l + k_l} \right)$$

This model predicts increasing scaling exponents for stem relative to roots, decreasing exponents for leaf relative to stem, increasing SMF and decreasing RMF and SMF -- as observed:

Interpretation

We do not suggest that this model should be directly interpreted as a mechanistic model for predicting changes in allometry during plant growth and neither should be the exact values of scaling exponents or mass fractions. For one, it omits many important features that may influence the economics of carbon allocation, such as the mechanical demands for below-ground anchorage, the effect of leaf investment on hydraulic conductance, the respiratory and hydraulic costs of height growth, the loss of leaf and fine root investments to senescence and the conversion of sapwood to heartwood, and the return of nutrients to the soil from leaf litter.
during growth. To incorporate all of these features requires a radically more detailed and mechanistically explicit model, and it is unlikely that any such model will apply generally enough across types of plants and environments to permit general theories of allometric scaling to be deduced. Instead, the analysis above shows that when MST's fundamental assumption about plant carbon economics – namely, that growth is directly proportional to leaf biomass – is minimally elaborated to include qualitative features of the economics of stem and root carbon investment, it quickly emerges that allometric scaling constants should vary continuously and in complex fashion during plant growth.

Simulation methods

We simulated the growth model described above using $k_s = k_l = k_t = 1$ with initial biomass pool sizes equal to 1/6 so that the total initial biomass was 0.5. For simulations including the saturating positive effect of height, we set $k_h = 1$. In each time step, the marginal product for each biomass pool was computed numerically using a small biomass increment (10^{-5}), and the biomass pool with the greatest marginal product was incremented by the biomass available for allocation, which was computed as the product of G and an arbitrary timestep of 0.3. This ensured that the marginal products remained approximately equal across biomass pools during the simulated growth period.
Table S1. Literature references on which the database is built.

Herbaceous species:

A-E

F-J

K-O

P-T

Woody species:

A-E

Corley & Tinker (2003) In: The Oil Palm; Corley et al. (1971) Expl. Agric. 7: 129-136;
K-O
Table S3 Overview of the representation of various plant groups in the database. Data are provided for the total number of observations for herbaceous and woody species, the % of the total observations related to each phylogenetic class, the % of all observations of a phylogenetic class that were made in the field (rather than in a growth chamber, a glasshouse, an Open Top Chamber or in an experimental field), and the total number of species represented by the observations in a phylogenetic class.

<table>
<thead>
<tr>
<th>Functional Type</th>
<th># of observations in the database</th>
<th>Phylogenetic class</th>
<th>% of total observations</th>
<th>% of the # of observations made in the field</th>
<th># of species per phylogenetic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbaceous</td>
<td>2954</td>
<td>Monocots</td>
<td>12.2</td>
<td>0</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eudicots</td>
<td>14.2</td>
<td>0</td>
<td>210</td>
</tr>
<tr>
<td>Woody</td>
<td>8178</td>
<td>Gymnosperms</td>
<td>33.4</td>
<td>80</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basal Angiosperms</td>
<td>0.8</td>
<td>54</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monocots</td>
<td>1.2</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eudicots</td>
<td>37.7</td>
<td>35</td>
<td>643</td>
</tr>
<tr>
<td>Intermediate</td>
<td>69</td>
<td>Eudicots</td>
<td>0.6</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
Table S4 Allometric scaling exponents as given for all records of all species, and for herbaceous and woody species separately. (a) Standard Major Axis regression (SMA; model 2 regression) for the intercept (α) and slope (β) of the regression of leaf mass (LM) vs. root mass (RM), stem mass (SM) vs. root mass, and leaf mass vs. stem mass, all based on log10-transformed values. The 95% confidence interval for the slope, as well as the r2 of the equation are given. (b) Ordinary least square regression (OLS), tested for linear and quadratic relationships. a is the value for the intercept, b1, b2 and b3 are the values for the linear, the quadratic and the cubic component, respectively. The degrees of freedom was >3000 for herbaceous species and >8,200 for woody species.

(A) Regression

<table>
<thead>
<tr>
<th>Species</th>
<th>Regression</th>
<th>α</th>
<th>β</th>
<th>95% CI for β</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>LM vs. SM</td>
<td>0.113</td>
<td>0.740</td>
<td>0.738 - 0.742</td>
<td>0.978</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.070</td>
<td>0.849</td>
<td>0.847 - 0.851</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.058</td>
<td>1.147</td>
<td>1.145 - 1.149</td>
<td>0.988</td>
</tr>
<tr>
<td>Herbaceous</td>
<td>LM vs. SM</td>
<td>0.239</td>
<td>0.864</td>
<td>0.855 - 0.872</td>
<td>0.928</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.192</td>
<td>0.985</td>
<td>0.972 - 0.991</td>
<td>0.931</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.054</td>
<td>1.140</td>
<td>1.128 - 1.153</td>
<td>0.904</td>
</tr>
<tr>
<td>Woody</td>
<td>LM vs. SM</td>
<td>0.127</td>
<td>0.728</td>
<td>0.725 - 0.730</td>
<td>0.971</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.077</td>
<td>0.834</td>
<td>0.831 - 0.837</td>
<td>0.970</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.069</td>
<td>1.146</td>
<td>1.143 - 1.149</td>
<td>0.987</td>
</tr>
</tbody>
</table>

(B) Regression

<table>
<thead>
<tr>
<th>Species</th>
<th>Regression</th>
<th>a</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>LM vs. SM</td>
<td>0.213</td>
<td>0.795</td>
<td>-0.0177</td>
<td>-</td>
<td>0.981</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.151</td>
<td>0.897</td>
<td>-0.0184</td>
<td>-</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.126</td>
<td>1.144</td>
<td>0.0318</td>
<td>-0.00606</td>
<td>0.989</td>
</tr>
<tr>
<td>Herbaceous</td>
<td>LM vs. SM</td>
<td>0.216</td>
<td>0.819</td>
<td>-0.0082</td>
<td></td>
<td>0.926</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.173</td>
<td>0.918</td>
<td>-0.0219</td>
<td></td>
<td>0.931</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.102</td>
<td>1.081</td>
<td>-</td>
<td></td>
<td>0.901</td>
</tr>
<tr>
<td>Woody</td>
<td>LM vs. SM</td>
<td>0.225</td>
<td>0.790</td>
<td>-0.0221</td>
<td>0.00094</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>LM vs. RM</td>
<td>0.110</td>
<td>0.897</td>
<td>-0.00356</td>
<td></td>
<td>0.975</td>
</tr>
<tr>
<td></td>
<td>SM vs. RM</td>
<td>-0.147</td>
<td>1.138</td>
<td>0.0408</td>
<td>-0.00748</td>
<td>0.990</td>
</tr>
</tbody>
</table>