












done on the canopy branch or highest accessible branch by hand if annual
cohorts extended beyond what was present on an individual branch. Life
span of the oldest cohort retaining >50% of the original live foliage was
estimated to the nearest 10th of a cohort (see refs. 18 and 33). Because
cohorts younger than this one tended to retain nearly all of their foliage,
and cohorts older than this tended to retain few, this technique provides
a reasonable estimate of both mean cohort and mean needle longevity.

Needles were scanned for leaf area and killed and dried in a 65 °C drying
oven within 12 h of their collection. Leaves or needles from individual trees
were ground into a composite sample and analyzed for analyzed for %N at
the University of California, Davis Stable Isotope Facility (Department of
Plant Sciences) using an Elementar Vario EL Cube or Micro Cube elemental
analyzer (Elementar Analysensysteme GmbH) interfaced to a PDZ Europa
20-20 isotope ratio mass spectrometer (Sercon Ltd.).

CABLE is the Australian community land surface model (22, 34) and has
been implemented into the Australian community earth system model
(ACCESS) (34). CABLE simulates the exchange of momentum, heat, water,
and CO2 exchange between land surface and lower atmosphere at hourly
time steps, plant growth, litter fall, and biogeochemical cycling of carbon,
nitrogen, and phosphorus at daily time steps. As in most global land surface
models, 13 plant functional types are used to approximate the variation of
vegetated surface on Earth and each plant functional type is defined by the
unique set of parameters values that are estimated from calibration or
published literature (see ref. 21). CABLE performs well compared with other
global land surface models at site level (see ref. 35) and can also reproduce
major global biogeochemical pools and fluxes quite well (see ref. 21). The
model has recently been used to study the effects of correlations among key
leaf traits on the simulated gross primary production (36).

For this study, our goal was to explore how different assumptions about
needle life span, needle N concentration, and the fraction of NPP allocation to
foliage affect the simulated GPP, NPP, and canopy LAI of evergreen needle
leaf forests in North America, Europe, and Asia. For some of the CABLE
scenarios we generated temperature-dependent NL (logNL = 0.8246–

0.0320*MAT°C) based on regression of NL in relation to MAT that included
all available data for all five species (n = 845). In CABLE we also generated
foliage N (mg/g) as a function of NL (logN = 0.1356–0.2252*logNL) based on
regressing N vs. NL, including all available data for all five species (n = 391).
To account for the decline in needle N with canopy depth within the canopy,
as observed for evergreen conifer forests (e.g., refs. 37 and 38), we assumed
that needle N decreases exponentially with the cumulative canopy LAI (see
ref. 39). This adjustment has a similar impact on whole-canopy N as adjusting
N by weighting the canopy by proportion in different needle age classes and
adjusting for differences in %N with needle age. We drove CABLE by reusing
the three-hourly 1° by 1° meteorological forcings for 1990 from the Global
Soil Water Project II (40, 41) year after year until the simulated annual GPP
and NPP reached their steady-state values. All of the simulated results as
reported here are steady-state values. Additionally, to analyze the sensitiv-
ities of simulated annual GPP, NPP, and canopy LAI to a 3 °C warming, we
recalculated the parameter values (fraction of NPP allocated to needle,
needle life span, and %N) that vary with MAT using MAT+3 if applicable for
every land point within the domain of this study for each of the seven
scenarios, and ran CABLE by adding 3 °C to the surface air temperature
across every time step. CABLE was run by reusing the GSWPII meteorological
forcing for 1990 until steady-state values of GPP, NPP, and canopy LAI were
obtained. The sensitivities of annual GPP, NPP, and canopy LAI to 3 °C
warming were then calculated using the results from the simulations here
and previously without 3 °C warming.
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Because several different aspects of climate vary spatially and
temporally, including along latitudinal gradients, we used the
available data to examine their combined impacts. The climate
indices we evaluated were mean annual temperature (MAT),
mean annual precipitation (MAP), and a commonly used index of
relative moisture supply, MAP/PET, where PET is potential
evapotranspiration. These climate variables covary among the
sites along the gradients in our study. For theNorth American and
European sites in this study, MAT varied linearly with latitude
(r = −0.90 and r = −0.95, respectively), as did MAP (r = −0.75
and r = −0.95, respectively), and MAT and MAP were also
strongly correlated with each other (r ≈ 0.7). Additionally, as is
well recognized, MAP is a poor indicator of moisture availability
at large geographical realms because in cold environments much
less precipitation is needed to maintain high levels of soil
moisture. In contrast, MAP/PET provides a measure of moisture
availability that includes both water supply and water loss. It is
possible that seasonal rather than mean annual climate factors
are important drivers of needle traits, so we also examined other
climate measures, including mean temperature of the warmest

quarter of the year and the total precipitation of the warmest
quarter, and mean temperature of the coldest quarter.
The seasonal climate metrics and MAP/PET were all signifi-

cantly correlated with MAT and MAP (positively) and negatively
correlated with latitude. Other than the correlation of MAT and
the mean temperature of the coldest quarter (which had a cor-
relation of 0.98 in both North America and Europe), the cor-
relations among climate variables were not so strong that they
could not be included in a single model designed to choose model
parameters. When log needle life span (NL) was assessed using a
backward stepwise selection process (using Bayesian information
criteria) against species, MAT, MAP, MAP/PET, and the mean
temperature of the warmest quarter, MAT was selected as the
best climate predictor. Thus, for both datasets, the low-to-high
latitude gradient represents a climate gradient where temper-
atures and precipitation decrease (both growing season and an-
nual), and where there is a trend for the precipitation/PET to
decline. It is possible that MAT therefore represents a number of
aspects of climate, and it is likely best to interpret the needle trait
to MAT patterns from such a perspective.
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Fig. S1. Mean NL (years) for four North American and one European evergreen conifer species in relation to latitude (LAT): Abies balsamea (logNL = −1.156 +
0.040*LAT; P = 0.0043, R2 = 0.39, n = 19), Picea glauca (logNL = −0.202 + 0.021*LAT; P < 0.0001, R2 = 0.59, n = 46), Pinus banksiana (logNL = 0.500 + 0.003*LAT;
P = 0.2867, R2 = 0.02, n = 80), Picea mariana (logNL = −0.530 + 0.028*LAT; P < 0.0001, R2 = 0.71, n = 51), and Pinus sylvestris (logNL = −1.322 + 0.032*LAT; P <
0.0001, R2 = 0.61, n = 79).
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Fig. S2. Mean needle nitrogen (mg/g) in relation to mean NL (years) for pooled data for four North American and one European evergreen conifer species
(logN = 1.150–0.244*logNL; P < 0.0001, R2 = 0.22, n = 195).
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Fig. S3. Relationships surface showing standing needle biomass (log, Mg/ha) in relation to above-ground biomass (log, Mg/ha) and to MAT for evergreen
conifers [data subsetted from Reich et al. (1)]. The full model R2 = 0.47, with both MAT and above-ground biomass significant (P < 0.0001), but the interaction
term was not significant (P = 0.32).
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Fig. S4. Sensitivity of modeled annual gross primary production (GPP) by Community Atmosphere Biosphere Land Exchange to 3 °C warming using the seven
permutations in Table 1.
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