Interestingly, oxytocin administration only increased mutual gaze duration in female dogs, whereas sex differences were not observed in experiment 1, which did not include unfamiliar individuals. Sex differences in the effects of intranasal oxytocin have been reported in humans as well (23, 24), and it is possible that females are more sensitive to the affiliative effects of oxytocin or that exogenous oxytocin may also be activating the vasopressin receptor system preferentially in males. Oxytocin and the structurally related vasopressin affect social bonding and aggression in sexually dimorphic manners in monogamous voles (8, 9), and oxytocin possibly increases aggression (23, 24). Therefore, the results of experiment 2 may indicate that male dogs were attending to both their owners and to unfamiliar people as a form of vigilance. The current study, despite its small sample size, implies a complicated role for oxytocin in social roles and contexts in dogs.

In human infants, mutual gaze represents healthy attachment behavior (25). Human functional magnetic resonance imaging studies show that the presentation of human and canine family members’ faces activated the anterior cingulate cortex, a region strongly acted upon by oxytocin systems (26). Urinary oxytocin variation in dog owners is highly correlated with the frequency of behavioral exchanges initiated by the dogs’ gaze (19). These results suggest that humans may feel affection for their companion dogs similar to that felt toward human family members and that dog-associated visual stimuli, such as eye-gaze contact, from their dogs activate oxytocin systems. Thus, during dog domestication, neural systems implementing gaze communications evolved that activate the humans’ oxytocin attachment system, as did gaze-mediated oxytocin release, resulting in an interspecies oxytocin-mediated positive loop to facilitate human-dog bonding. This system is not present in the closest living relative of the domesticated dog.

In the present study, urinary oxytocin concentrations in owners and dogs were affected by the dog’s gaze and the duration of dog-touching. In contrast, mutual gaze between hand-raised wolves and their owners was not detected, nor was there an increase in urinary oxytocin in either wolves or their owners after a 30-min experimental interaction (experiment 1). Moreover, the nasal administration of oxytocin increased the total amount of time that female dogs gazed at their owners and, in turn, urinary oxytocin concentrations in owners (experiment 2). We examined the association between our results and early-life experience with humans in dogs and wolves in order to test the possibility that our results were due to differences in early-life experience with humans. The results did not indicate a significant association between the animals’ early-life experiences with humans and the findings of the current study (see the supplementary methods). Moreover, there were no significant differences between dogs in the long-gaze group and wolves in either the duration of dog/wolf-touching and dog/wolf-talking, suggesting that the shorter gaze of the wolves was not due to an unstable relationship. These results support the existence of a self-perpetuating oxytocin-mediated positive loop in human-dog relationships that is similar to that of human mother-infant relations. Human-dog interaction by dogs’ human-like gazing behavior brought on social rewarding effects due to oxytocin release in both dogs and humans and followed the deepening of mutual relationships, which led to interspecies bonding.

REFERENCES AND NOTES

ACKNOWLEDGMENTS
This study was supported in part by the Grant-in-Aid for Scientific Research on Innovative Areas (No. 4501) from the Japan Society for the Promotion of Science in Japan. We thank all human and canine participants, Howlin’ KS Nature School, U.S. Kennel, R. Oyama and N. Yoshida-Tsuchihashi from Azabu University, and Drs. Kato and Takeda from University of Tokyo Health Sciences. We are also grateful to Cody and Charley for their significant contributions. The analyzed data are included in the supplementary materials.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/348/6232/333/suppl/DC1
Materials and Methods
Figs. S1 to S5
Tables S1 to S4
References (27–30)
Movies S1 to S3
Data Tables 1 and 2
9 September 2014; accepted 3 March 2015
10.1126/science.1261022

PLANT ECOLOGY
Anthropogenic environmental changes affect ecosystem stability via biodiversity
Yann Hautier,1,2,3* David Tilman,2,4 Forest Isbell,2 Eric W. Seabloom,2 Elizabeth T. Borer,2 Peter B. Reich5,6

Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth’s ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor in determining how global environmental changes affect ecosystem stability.

Human domination of Earth’s ecosystems, especially conversion of about half of the Earth’s ice-free terrestrial ecosystems into cropland and pasture, is simplifying ecosystems via the local loss of biodiversity (1, 2). Other major global anthropogenic changes include nutrient eutrophication, fire suppression and elevated fire frequencies, predator declination, climate warming, and drought, which likely affect many aspects of ecosystem functioning, especially ecosystem productivity, stability, and biodiversity (1, 3–7). However, to date there has been little evidence showing whether or how these three ecosystem responses may be mechanistically
linked. Rather, at present each anthropogenic driver of environmental change has been considered to have its own idiosyncratic syndrome of impacts on ecosystem productivity, stability, and biodiversity (1, 5–10).

This perspective was recently called into question by a study showing that the initial impacts of nutrient addition on grassland productivity were reduced through time in proportion to the extent to which nutrient addition led to the loss of plant diversity (II). In essence, that study suggested that the positive dependence of productivity on plant diversity (12–17), in combination with the negative effect of eutrophication on diversity (8, 16), caused the initial increase in productivity with nitrogen enrichment to diminish over time due to the loss of plant diversity caused by chronic nitrogen fertilization (II). This suggests the hypothesis that other drivers of global environmental change may have biodiversity-mediated effects on ecosystem functioning (19)—that changes in biodiversity resulting from anthropogenic drivers may be an intermediate cause of subsequent changes in ecosystem functioning. Here we test this hypothesis. Numerous biodiversity experiments have shown that reduced plant diversity leads to decreased temporal stability of productivity because of reductions in compensatory dynamics or in asynchronous responses to environmental fluctuations (12, 16, 20, 21). Here, our test determines how experimental manipulations of nitrogen (N), carbon dioxide (CO2), fire, herbivory, and water affect biodiversity and productivity; and if changes in ecosystem stability associated with each environmental driver have the same dependence on biodiversity as observed in biodiversity experiments, or if each driver has an individualistic impact on stability (5, 6).

We perform this particular test because, whereas effects of anthropogenic drivers on biodiversity and productivity have been widely investigated (5, 6, II), their long-term impacts on the temporal stability of productivity have received less attention, and the few published studies examining a single driver report mixed results (7, 9, 10, 22–25). A commonly used measure of stability among many proposed in the ecological literature (26, 27) defines the temporal stability of productivity (S) as the ratio of the temporal mean of productivity to its temporal variability as measured by its standard deviation (SD) (26). This measure of stability is the inverse of the coefficient of variation. Unlike this definition, a driver could increase stability by increasing the mean productivity relative to the SD, by decreasing the SD relative to the mean productivity, or both. Drivers that increase the SD may also increase stability if there is a correspondingly larger proportional increase in mean productivity (or vice versa) (7, 20, 29). Importantly, given that the temporal mean and SD of productivity can depend on biodiversity (7, 21, 29), drivers might influence stability through their long-term effects on biodiversity. The simultaneous impacts of various drivers on ecosystem productivity, biodiversity, and stability have not previously been explored, thus limiting our current understanding.

Here, we determine if ecologically or societally relevant magnitudes of change in six important anthropogenic drivers influence the stability of ecosystem productivity and whether changes in stability correspond with changes in biodiversity. In particular, we test the hypothesis that changes in biodiversity, regardless of the causal factor, consistently affect the stability of ecosystem productivity.

We used data from 12 experiments that manipulated one or more anthropogenic drivers over a period of 4 to 28 years (table S1). We examine both long-term stability (temporal stability determined using all 4 to 28 years of data collected on aboveground biomass in each experiment) and short-term stability (the temporal stability of each 3-year period of each experiment) and the dependence of these metrics of stability on the concurrent measures of plant species numbers.

We begin by evaluating the extent to which changes in grassland plant diversity, whether experimentally manipulated or in response to other anthropogenic drivers, including N, CO2, fire, herbivory, and water, predict changes in the long-term temporal stability of productivity. Our analyses control for what otherwise might be potentially confounding variables by including only experiments at the Cedar Creek Ecosystem Science Reserve on well-drained sandy soils of east-central Minnesota, USA, that used perennial grassland ecosystems of similar plant species compositions (5). We determined long-term temporal stability, S, as μ/σ, where μ is the average productivity of a plot across all years and σ is the temporal standard deviation in the productivity of that plot across all years. We calculated long-term stability responses as the natural logarithm of the ratio (log response ratio or lrr) of the long-term stability within each treatment plot divided by the average long-term stability in the reference plots (lrr.S). Similarly, we calculated the associated plant species richness responses as the natural logarithm of the ratio of the average richness across all years within each treatment plot divided by the average richness across all years in the reference plots (lrr.rich). Log response ratios quantify the proportional change in treatment plots relative to reference plots. Because lrr.S is the difference between the log response ratio of the temporal mean (lrr.mean) and the log response ratio of the temporal standard deviation (lrr.SD), it separates the effects of anthropogenic drivers on stability into their simultaneous effects on the mean and variance of productivity.

Reference plots were unmanipulated or otherwise had more historically typical conditions, such as effects of anthropogenic drivers on biodiversity and productivity have been widely investigated (5, 6, II), their long-term impacts on the temporal stability of productivity have received less attention, and the few published studies examining a single driver report mixed results (7, 9, 10, 22–25). A commonly used measure of stability among many proposed in the ecological literature (26, 27) defines the temporal stability of productivity (S) as the ratio of the temporal mean of productivity to its temporal variability as measured by its standard deviation (SD) (26). This measure of stability is the inverse of the coefficient of variation. Unlike this definition, a driver could increase stability by increasing the mean productivity relative to the SD, by decreasing the SD relative to the mean productivity, or both. Drivers that increase the SD may also increase stability if there is a correspondingly larger proportional increase in mean productivity (or vice versa) (7, 20, 29). Importantly, given that the temporal mean and SD of productivity can depend on biodiversity (7, 21, 29), drivers might influence stability through their long-term effects on biodiversity. The simultaneous impacts of various drivers on ecosystem productivity, biodiversity, and stability have not previously been explored, thus limiting our current understanding.

Here, we determine if ecologically or societally relevant magnitudes of change in six important anthropogenic drivers influence the stability of ecosystem productivity and whether changes in stability correspond with changes in biodiversity. In particular, we test the hypothesis that changes in biodiversity, regardless of the causal factor, consistently affect the stability of ecosystem productivity.

We used data from 12 experiments that manipulated one or more anthropogenic drivers over a period of 4 to 28 years (table S1). We examine both long-term stability (temporal stability determined using all 4 to 28 years of data collected on aboveground biomass in each experiment) and short-term stability (the temporal stability of each 3-year period of each experiment) and the dependence of these metrics of stability on the concurrent measures of plant species numbers.

We begin by evaluating the extent to which changes in grassland plant diversity, whether experimentally manipulated or in response to other anthropogenic drivers, including N, CO2, fire, herbivory, and water, predict changes in the long-term temporal stability of productivity. Our analyses control for what otherwise might be potentially confounding variables by including only experiments at the Cedar Creek Ecosystem Science Reserve on well-drained sandy soils of east-central Minnesota, USA, that used perennial grassland ecosystems of similar plant species compositions (5). We determined long-term temporal stability, S, as μ/σ, where μ is the average productivity of a plot across all years and σ is the temporal standard deviation in the productivity of that plot across all years. We calculated long-term stability responses as the natural logarithm of the ratio (log response ratio or lrr) of the long-term stability within each treatment plot divided by the average long-term stability in the reference plots (lrr.S). Similarly, we calculated the associated plant species richness responses as the natural logarithm of the ratio of the average richness across all years within each treatment plot divided by the average richness across all years in the reference plots (lrr.rich). Log response ratios quantify the proportional change in treatment plots relative to reference plots. Because lrr.S is the difference between the log response ratio of the temporal mean (lrr.mean) and the log response ratio of the temporal standard deviation (lrr.SD), it separates the effects of anthropogenic drivers on stability into their simultaneous effects on the mean and variance of productivity.

Reference plots were unmanipulated or otherwise had more historically typical conditions, such as effects of anthropogenic drivers on biodiversity and productivity have been widely investigated (5, 6, II), their long-term impacts on the temporal stability of productivity have received less attention, and the few published studies examining a single driver report mixed results (7, 9, 10, 22–25). A commonly used measure of stability among many proposed in the ecological literature (26, 27) defines the temporal stability of productivity (S) as the ratio of the temporal mean of productivity to its temporal variability as measured by its standard deviation (SD) (26). This measure of stability is the inverse of the coefficient of variation. Unlike this definition, a driver could increase stability by increasing the mean productivity relative to the SD, by decreasing the SD relative to the mean productivity, or both. Drivers that increase the SD may also increase stability if there is a correspondingly larger proportional increase in mean productivity (or vice versa) (7, 20, 29). Importantly, given that the temporal mean and SD of productivity can depend on biodiversity (7, 21, 29), drivers might influence stability through their long-term effects on biodiversity. The simultaneous impacts of various drivers on ecosystem productivity, biodiversity, and stability have not previously been explored, thus limiting our current understanding.

Here, we determine if ecologically or societally relevant magnitudes of change in six important anthropogenic drivers influence the stability of ecosystem productivity and whether changes in stability correspond with changes in biodiversity. In particular, we test the hypothesis that changes in biodiversity, regardless of the causal factor, consistently affect the stability of ecosystem productivity.

We used data from 12 experiments that manipulated one or more anthropogenic drivers over a period of 4 to 28 years (table S1). We examine both long-term stability (temporal stability determined using all 4 to 28 years of data collected on aboveground biomass in each experiment) and short-term stability (the temporal stability of each 3-year period of each experiment) and the dependence of these metrics of stability on the concurrent measures of plant species numbers.

We begin by evaluating the extent to which changes in grassland plant diversity, whether experimentally manipulated or in response to other anthropogenic drivers, including N, CO2, fire, herbivory, and water, predict changes in the long-term temporal stability of productivity. Our analyses control for what otherwise might be potentially confounding variables by including only experiments at the Cedar Creek Ecosystem Science Reserve on well-drained sandy soils of east-central Minnesota, USA, that used perennial grassland ecosystems of similar plant species compositions (5). We determined long-term temporal stability, S, as μ/σ, where μ is the average productivity of a plot across all years and σ is the temporal standard deviation in the productivity of that plot across all years. We calculated long-term stability responses as the natural logarithm of the ratio (log response ratio or lrr) of the long-term stability within each treatment plot divided by the average long-term stability in the reference plots (lrr.S). Similarly, we calculated the associated plant species richness responses as the natural logarithm of the ratio of the average richness across all years within each treatment plot divided by the average richness across all years in the reference plots (lrr.rich). Log response ratios quantify the proportional change in treatment plots relative to reference plots. Because lrr.S is the difference between the log response ratio of the temporal mean (lrr.mean) and the log response ratio of the temporal standard deviation (lrr.SD), it separates the effects of anthropogenic drivers on stability into their simultaneous effects on the mean and variance of productivity.

Reference plots were unmanipulated or otherwise had more historically typical conditions, such as effects of anthropogenic drivers on biodiversity and productivity have been widely investigated (5, 6, II), their long-term impacts on the temporal stability of productivity have received less attention, and the few published studies examining a single driver report mixed results (7, 9, 10, 22–25). A commonly used measure of stability among many proposed in the ecological literature (26, 27) defines the temporal stability of productivity (S) as the ratio of the temporal mean of productivity to its temporal variability as measured by its standard deviation (SD) (26). This measure of stability is the inverse of the coefficient of variation. Unlike this definition, a driver could increase stability by increasing the mean productivity relative to the SD, by decreasing the SD relative to the mean productivity, or both. Drivers that increase the SD may also increase stability if ...
as high diversity or ambient N, CO$_2$, herbivory, and water conditions or pre-settlement fire conditions. In particular, we compared biodiversity from plots planted with one, two, and four species to reference plots planted with 16 species, a level representative of a high-diversity (16.3 species m$^{-2}$) natural grassland community in this area (5). N additions of 270, 170, 95, 54, 34, 20, and 10 kg ha$^{-1}$ were compared to plots receiving no N, and addition of CO$_2$ and water, fire suppression, and herbivore exclusion were compared to grassland plots with ambient or pre-settlement conditions. These treatments (except 270, 170, and 95 kg N ha$^{-1}$ and perhaps the monocultures of biodiversity experiments) also fall within the ranges occurring in natural grassland ecosystems of this region (5). We found that changes in plant diversity in response to anthropogenic drivers, including N, CO$_2$, fire, herbivory, and water, were positively associated with changes in temporal stability of productivity (black line in Fig. 1; Fig. 2, C and D). This positive association was independent of the nature of the driver, resulting in parallel relationships (all colored lines except red in Fig. 1; table S2). This suggests that biodiversity-mediated effects on stability are independent of the factor driving changes in biodiversity. Moreover, the positive association between changes in plant diversity and changes in stability in response to anthropogenic drivers was similar to that observed in two neighboring experiments that directly manipulated plant diversity (compare the black and red lines in Fig. 1) (2). Thus, changes in biodiversity resulting from anthropogenic environmental changes have similar effects on stability as observed in biodiversity experiments, suggesting that changes in biodiversity may be an intermediary factor influencing how anthropogenic environmental changes affect ecosystem stability. For example, whether a 30% change in plant diversity (lrr.rich = –0.357) resulted from elevated N, CO$_2$, or water or from herbivore exclusion, fire suppression, or direct manipulation of plant diversity, stability tended to decrease in parallel by 8% (lrr.S = –0.082). This conclusion is supported by analyses showing that there was no remaining effect of anthropogenic drivers on changes in stability after biodiversity-mediated effects were taken into account (table S3) and that changes in stability based on biodiversity manipulations predict changes in stability in response to anthropogenic drivers (fig. S1).

We next evaluated the extent to which changes in temporal stability of productivity in response to anthropogenic drivers were caused by changing the temporal mean of productivity or the temporal variance of productivity. We found that when a driver of environmental change caused mean productivity to change, it did not consistently lead to higher or lower stability of productivity (Fig. 2 and table S4). For example, decreases in biodiversity from 16 species to one, two, and four species decreased both the temporal mean and stability of productivity (Fig. 2, A and C). By contrast, addition of N, CO$_2$, and water; fire suppression; and herbivore exclusion generally increased the temporal mean of productivity, although not always significantly (Fig. 2A), but either increased (N addition of 20 kg ha$^{-1}$, fire suppression, and water addition), reduced (N addition of 270, 170, 95, and 54 kg ha$^{-1}$), or had no detectable effects (N addition of 34 and 20 kg ha$^{-1}$, addition of CO$_2$, and herbivore exclusion) on stability (Fig. 2C). These differing effects on stability (Fig. 2C) were due to differences in the direction and magnitude of drivers’ impact on mean productivity (Fig. 2A) compared to their variance (Fig. 2B). For example, experimental decreases in biodiversity caused a larger decrease in mean productivity than in its variance, resulting in decreased stability; whereas N addition of 10 kg ha$^{-1}$, fire suppression, and water addition each caused a larger increase in mean productivity
than in its variance, resulting in increased stability. By contrast, N addition of 270, 170, 95, and 54 kg ha\(^{-1}\) caused a larger increase in the variance than the mean, resulting in reduced stability. We do not expect the direction and magnitude of changes in the numerator or denominator of the stability ratio to be universal. For example, in other biodiversity experiments, decreases in biodiversity caused a larger decrease in the variance of productivity than the mean (29). Our results, however, do indicate that drivers consistently reduce stability when they reduce biodiversity.

Together, these results suggest that changes in biodiversity, whether experimentally manipulated or in response to other anthropogenic drivers, caused consistent changes in ecosystem stability of productivity (Figs. 1 and 2, C and D) not because of consistent effects of a driver or biodiversity on either the temporal mean of productivity or on its temporal variance (Fig. 2, A and B) but rather because of consistent effects on their ratio, which is stability (Figs. 1 and 2, C and D). The repeatedly observed quantitative effects of changes in biodiversity on ecosystem stability in this study are consistent with predictions of ecosystem stability by models of interactions among species that coexist because of interspecific trade-offs (30). They are also consistent with results of numerous biodiversity experiments (29).

We found no evidence that biodiversity-mediated effects on stability were caused by similar shifts in the abundances of functional groups or species (Fig. S2). For example, although diversity and stability declined, native perennial C\(_4\) grasses increased under herbivory exclusion (e.g., *Sorghastrum nutans*) and declined under high levels of chronic nitrogen enrichment (e.g., *Schizachyrium scoparium*), while non-native perennial C\(_3\) grasses declined under herbivory exclusion (e.g., *Koeleria cristata*) and increased under high levels of chronic nitrogen enrichment (e.g., *Agropyron repens*). Thus, various drivers led to similar changes in stability by causing changes in biodiversity, even though the various drivers had different effects on functional groups and particular species.

We also assessed whether the diversity and stability responses were consistent through time by dividing the 4 to 28 years of annual data into overlapping intervals of three consecutive years and calculating short-term stability and average species richness for each interval. This allows us to account for the effects of the different duration of the experiments (31). Effects of anthropogenic drivers on diversity and short-term stability were consistent through time. Specifically, diversity and stability had a weak tendency to decrease with increasing treatment duration. Data were divided into overlapping intervals of 3 years reported as posttreatment period after initiation of the experiment (31), with diversity and stability determined for each interval. Colors for the points and lines correspond to treatments in Fig. 2.

Fig. 3. Temporal trends in effect sizes of ecosystem stability and biodiversity responses to anthropogenic drivers of environmental change.

Effects of anthropogenic drivers on (A) stability ($F_{1,220} = 30.6, P < 0.001$) and (B) diversity ($F_{1,254} = 103.3, P < 0.001$) were consistent through time (Drivers × Time: $P > 0.1$ in both cases). Stability ($F_{1,254} = 86.5, P < 0.001$) and diversity ($F_{1,220} = 24.8, P < 0.001$) had a weak tendency to decrease with increasing treatment duration. Data were divided into overlapping intervals of 3 years reported as posttreatment period after initiation of the experiment (31), with diversity and stability determined for each interval. Colors for the points and lines correspond to treatments in Fig. 2.

By causing changes in biodiversity, even though the various drivers had different effects on functional groups and particular species.

We also assessed whether the diversity and stability responses were consistent through time by dividing the 4 to 28 years of annual data into overlapping intervals of three consecutive years and calculating short-term stability and average species richness for each interval. This allows us to account for the effects of the different duration of the experiments (31). Effects of anthropogenic drivers on diversity and short-term stability were consistent through time. Specifically, diversity and stability had a weak tendency to decrease with increasing treatment duration independently of the nature of the driver, resulting in parallel negative relationships (Fig. 3). These results further suggest that the decrease in stability over time was associated with declining plant diversity in response to anthropogenic drivers.

In total, we found that the loss of plant diversity was associated with decreased stability not only in experiments that manipulate diversity (20, 21) but also when biodiversity changed in response to other anthropogenic drivers. In combination with recent demonstrations that biodiversity is a major determinant of productivity (5, 6, 11), these findings suggest that any drivers of environmental change that affect biodiversity are likely to have long-term ecosystem impacts that result from these changes in biodiversity (19). Furthermore, biodiversity-mediated effects on stability did not qualitatively depend either on the particular factor that caused the change in biodiversity or on shifts in the abundance of particular functional groups or species. Altogether, our multiyear experiments suggest that there may be a universal impact of biodiversity change on ecosystem stability in response to anthropogenic environmental changes, with decreased plant species numbers leading to lower ecosystem stability regardless of the cause of biodiversity loss. Our work suggests that conservation policies should encourage management procedures that restore or maintain natural levels of biodiversity or minimize the negative impacts of anthropogenic global environmental changes on biodiversity loss to ensure the stable provision of ecosystem services.

REFERENCES AND NOTES

31. Materials and methods are available as supplementary materials on Science Online.
STEM CELLS

Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness

Pekka Katajisto,1,2,4,5 Julia Döhlä,4 Christine L. Chaffer,1 Nalle Pentimikko,4 Nemanja Marjanovic,1,2 Sharif Iqbal,4 Roberto Zoneu,1,2,3 Walter Chen,1,2,3 Robert A. Weinberg,1,2 David M. Sabatini1,2,3,5,6

By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.

1Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. 2Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. 3Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. 4Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. 5Broad Institute, Cambridge, MA 02142, USA. 6The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA.

*Corresponding author. E-mail: pekka.katajisto@helsinki.fi (P.K.); sabatini@mit.edu (D.M.S.) (Present address: Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland.)

We followed the behavior of labeled components in single round SLCs or flat epithelial cells and focused on cell divisions that occurred 10 to 20 hours after paGFP photoactivation (Fig. 1B). The epithelial cells symmetrically apportioned all cellular components analyzed (Fig. 1B). In contrast, the round SLCs apportioned ~5.6 times as much (P < 0.001, t test) of ≥10-hour-old mitochondrial outer membrane protein 25 (paGFP-Omp25) to one daughter cell as to the other (Fig. 1B). Similarly, labeled markers for all other organelles examined were apportioned symmetrically. We designated the daughter cell that inherited more aged Omp25 from the mother cell as Progeny1 (P1) and the other as Progeny2 (P2).

To determine whether the same cells that asymmetrically apportion the mitochondrial membrane protein also allocate other membrane compartments asymmetrically, we labeled SLCs with the lipophilic dye PKH26 before photoactivation of paGFP-Omp25. PKH26 initially labels the plasma membrane and is gradually endocytosed to form distinct cytoplasmic puncta, and it is relatively symmetrically apportioned during division of hematopoietic cells (23). SLCs apportioned old mitochondria asymmetrically, but the same cells apportioned PKH26 symmetrically (Fig. 1C and movie S1). In contrast, the epithelial cells apportioned both paGFP-Omp25 and PKH26 symmetrically (Fig. 1C and movie S2), similarly to mouse embryonic fibroblasts (not shown).

To verify that SLCs indeed apportion mitochondria according to the age of the organelle, we analyzed the apportioning of paGFP-Omp25 in cell divisions that occurred at random times after the initial photoactivation. We assumed that the age of Omp25 molecules reflected the age of the mitochondria with which they were associated. Cells that divided 0 to 10 hours after photoactivation showed symmetric apportioning of paGFP-Omp25 (Fig. 1D). However, cells that divided more than 10 hours after photoactivation, and thus carried fluorescent marks only on organelles that were at least 10 hours old, apportioned their labeled mitochondria asymmetrically (Fig. 1D).

To follow the apportioning of two different age classes of mitochondria, we tagged mitochondria with mitochondrial proteins fused to a Snap-tag (14). Snap-tag is a derivatized DNA repair enzyme, O6-alkylguanine-DNA alkyltransferase, which can covalently link various fluorophores to the tagged fusion protein in live cells. We used two Snap-tag substrates with two different fluorophores (red

We used stemlike cells (SLCs) recently identified in cultures of immortalized human mammary epithelial cells (10) to investigate whether mammalian stem cells can differentially apportion aged, potentially damaged, subcellular components, such as organelles between daughter cells. These SLCs express genes associated with stemness, form mammospheres, and, after transformation, can initiate tumors in vivo (10, 11). Moreover, because of their round morphology, the SLCs can be distinguished by visual inspection from the flat, tightly adherent, nonstemlike mammary epithelial cells with which they coexist in monolayer cultures (Fig. 1B).

To monitor the fate of aged subcellular components, we expressed photovativatable green fluorescent protein (paGFP) (12) in lysosomes, mitochondria, the Golgi apparatus, ribosomes, and chromatin by fusing the fluorescent protein to the appropriate targeting signals or proteins (table S1). paGFP fluoresces only after exposure to a pulse of ultraviolet (UV) light (12), allowing us to label each component in a temporally controlled manner (Fig. 1A). Because synthesis of paGFP continues after the light pulse, cells subsequently accumulate unlabeled “young” components in addition to the labeled “old” components; these can be either segregated in distinct subcellular compartments or commingled within individual cells.
Anthropogenic environmental changes affect ecosystem stability via biodiversity
Yann Hautier et al.
Science 348, 336 (2015);
DOI: 10.1126/science.aaa1788
Supplementary Materials for

Anthropogenic environmental changes affect ecosystem stability via biodiversity

Yann Hautier,* David Tilman, Forest Isbell, Eric W. Seabloom, Elizabeth T. Borer, Peter B. Reich

*Corresponding author. E-mail: yann.hautier@plants.ox.ac.uk

Published 17 April 2015, Science 348, 336 (2015)
DOI: 10.1126/science.aaa1788

This PDF file includes:

Materials and Methods
Figs. S1 and S2
Tables S1 to S4
References
Materials and Methods

The 12 multi-year field experiments were all performed at Cedar Creek Ecosystem Science Reserve, Bethel, MN. Our experiments manipulated one or more of the following drivers: biodiversity, nitrogen, water, CO₂, fire, and herbivory (Table 1). Responses reported here focus on effects of single factors. Responses to treatments were measured over the whole duration for each experiment (“long-term”; 4 to 28 years) and, when possible, over overlapping intervals of three consecutive years (“short-term”).

For all analyses presented here and for each experiment, we first calculated the mean and standard deviation of aboveground biomass production over time within each plot. We then calculated the mean and standard deviation response as the natural logarithm of the ratio of the mean and standard deviation within each treatment plot divided by the average mean and standard deviation across all reference plots for a treatment. Stability response (lrr.S) was then calculated as the difference between the log response ratio of the mean (lrr.mean) and the log response ratio of the standard deviation (lrr.SD). Similarly, richness response was calculated as the natural log of the ratio of the temporal mean of richness within each treatment plot divided by the average temporal mean of richness in the reference plots (lrr.rich). Each variable has one value per treatment plot for each experiment (total of 578 treatment plots across all experiments) that summarizes temporal values derived from > 9,900 biomass measurements across all years of all treatment plots and from > 2,400 biomass measurements from the various reference plots (total of 186 reference plots) associated with the various experiments. All analyses were conducted in R 2.15.1 (32).

We used mixed effect models to evaluate the influence on stability of changes in richness resulting from experimental manipulation or in response to other anthropogenic drivers. Experiments and anthropogenic drivers of environmental change grouped in six categories were treated as random effect allowing both the intercepts and slopes of regression versus diversity to vary between drivers if supported by model selection. Our analyses allowed us to test for biodiversity mediated effects on stability. However, in contrast to the experimental manipulation of biodiversity where the direction of the causality between changes in biodiversity and changes in stability is clearly identified, similarly to previous studies (11, 33) we assumed that changes in biodiversity in response to anthropogenic drivers including N, CO₂, water, fire and herbivore, caused changes in ecosystem stability, rather than the inverse. Note that testing the effect of productivity on biodiversity would require manipulating productivity independently of abiotic factors, as biodiversity experiments have done. While our mixed effects model approach allows us testing biodiversity-mediated effects on stability, it does not allow us testing effects of anthropogenic drivers on stability independently of their effects on biodiversity. To evaluate the direction and magnitude of effect sizes on mean, SD and stability among drivers, we used ANOVA on the untransformed data from all years that kept the sign (i.e., + or -) of the effect on the response.

To evaluate the influence of shifts in the abundances of functional groups through time on productivity, functional groups were grouped in four categories including C3
grasses, C4 grasses, forbs and legumes and calendar years were turned into chronological years after treatment was applied (post treatment year). We conducted an analysis of covariance to test whether aboveground biomass production depended on post treatment year, functional groups, anthropogenic drivers of environmental change, or their interaction. Aboveground biomass production was log transformed to ensure normality.

To test for temporal trends in stability and diversity responses to drivers, we used data on overlapping intervals of three consecutive years. We turned the three-years intervals into single values representing the chronological year after treatment was applied (post treatment period), such that year 1-3 became post treatment period 1, year 2-4 became post treatment period 2, year 3-5 became post treatment period 3, and so on. We conducted an analysis of covariance to test whether the log response ratio of diversity and stability depended on the post treatment period, anthropogenic drivers of environmental change, or their interaction.

Detailed methods and original data can be found at http://www.cedarcreek.umn.edu/research/data. Use of data must be in accordance with the conditions agreed to in the Cedar Creek Ecosystem Science Reserve Data Access Policy. Each Cedar Creek research project is assigned an “experiment number”, such as “e001” (see column five in Table S1 for the experiment number of each experiment used in this study). Data for each experiment can be accessed using the dropdown “Experiments” menu in the box “Search Data”. For example to access experiment “e120”, scroll down the “Experiments” menu in the box “Search Data” and click “e120: Biodiversity II: Effects of Plant Biodiversity on Population and Ecosystem Processes”. Then click the box “search” and access the plant aboveground biomass data by clicking on “ple120” in the column “Dataset ID” of the box “Signature research”. This will open a new window where the dataset can be downloaded in “TEXT FORMAT”, “HTML FORMAT” or “EML FORMAT” by clicking on the corresponding link in the box “Download dataset lpe120”. Data for each experiment can also be directly accessed by clicking on the links provided in column six of Table S1. For example to access experiment “e120” click on http://www.cedarcreek.umn.edu/research/data/dataset?ple120 and then choose the format by clicking on the corresponding link in the box “Download dataset lpe120”. The first time you access the data you will have to create an account in order to log in by clicking on the link “Click here to create a new account” and agree with the code of ethics and rules for use.
Fig. S1.
Relationship between observed changes in stability of productivity in response to anthropogenic drivers and predicted changes in stability based on biodiversity manipulations. The biodiversity experiments slightly underestimated the effects of realistic biodiversity losses on stability in the anthropogenic change experiments; the slope (slope and 95% confidence intervals: 1.86 (1.37 to 2.34)) is greater than the slope of 1.0 expected for a 1:1 match between observed and predicted values (dashed line). The slopes of the change in biodiversity versus the change in stability in both experiment types were not significantly different (F1,561 = 3.29, P = 0.07; Fig. 1).
Fig. S2.
Temporal trends in effect sizes of aboveground biomass (log transformed) in response to anthropogenic drivers of environmental change for four plant functional groups: C3 grasses, C4 grasses, forbs and legumes. Colors for the points and lines correspond to treatments in Fig. 2.
Table S1.
Summary of field experiments (N = 12). Compare with Table 1 in Tilman et al. (5) to identify for the main differences in the data used in the two studies. Detailed methods and original data can be found at http://www.cedar Creek.umn.edu/research/data. Data for each experiment can also be directly accessed by clicking on the links provided in column six.

<table>
<thead>
<tr>
<th>Experimental variable</th>
<th>Variables used in analyses</th>
<th>Experiment period (no. years)</th>
<th>Years with data available</th>
<th>Experiment no./name</th>
<th>Website link</th>
<th>Field/ring</th>
<th>Number of control plots per year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ addition</td>
<td>Ambient CO₂ or 560 ppm CO₂ via "FACE" (only 9 or 16 species plots that were unfertilized)</td>
<td>1998-2011 (14 y)</td>
<td>1998-2011</td>
<td>e141 "BioCON"</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple141</td>
<td>1,2,3,4,5,6</td>
<td>27 (34)</td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td>1,2,4,16 species</td>
<td>1996-2013 (18 y)</td>
<td>1996-2013</td>
<td>e120 "BigBio"</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple120</td>
<td>35 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td>1,4,16 species (only unfertilized and ambient CO₂ plots)</td>
<td>1998-2011 (14 y)</td>
<td>1998-2011</td>
<td>e141 "BioCON"</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple141</td>
<td>1,2,3,4,5,6</td>
<td>24 (34)</td>
<td></td>
</tr>
<tr>
<td>Herbivory exclusion</td>
<td>Unfenced or deer exclosure</td>
<td>2005-2011 (7 y)</td>
<td>2005-2011</td>
<td>e001</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple001</td>
<td>C</td>
<td>23 (36)</td>
<td></td>
</tr>
<tr>
<td>Herbivory exclusion</td>
<td>Unfenced or deer exclosure</td>
<td>2008-2011 (4 y)</td>
<td>2008-2011</td>
<td>e245</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple245</td>
<td>8 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen addition</td>
<td>0.0,10,20,34,54,95,170, 270 kg N ha⁻¹ yr⁻¹</td>
<td>1982-2004 (23 y)</td>
<td>1982-2004</td>
<td>e001</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple001</td>
<td>B,C,D</td>
<td>23 (36)</td>
<td></td>
</tr>
<tr>
<td>Water addition</td>
<td>Ambient rain or ~50% increase via watering</td>
<td>2007-2011 (5 y)</td>
<td>2007-2011</td>
<td>e248</td>
<td>http://www.cedar Creek.umn.edu/research/data/dataset?ple248</td>
<td>6 (39)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2.
Biodiversity-mediated effects on temporal stability of productivity do not depend on the factor that causes the change in biodiversity. The model comparison tests the anthropogenic drivers of environmental change random effect of the mixed effects model of the log response ratio of temporal stability of productivity (lrr.S) as a function of the log response ratio of plant species richness (lrr.rich). The models compare a model with random intercepts only versus a model with random intercepts and slopes. Table shows the degrees of freedom (DF), the Bayesian Information Criteria values (BIC), the difference in the Bayesian Information Criteria values (ΔBIC) and the evidence (E) for each model. For the model with random intercepts only, BIC is much lower, which thus does not support the hypothesis that slopes of regression vary between the different drivers. With a difference in BIC of 12.7, the model with random intercepts only has 572.5 times the weight of evidence, E, in its favor when compared to the model in which the driver-dependent regressions have both different intercepts and different slopes.

<table>
<thead>
<tr>
<th>Model</th>
<th>DF</th>
<th>BIC</th>
<th>ΔBIC</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed=lrr.rich, Random=1</td>
<td>5</td>
<td>223.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fixed=lrr.rich, Random=1+lrr.rich</td>
<td>7</td>
<td>235.7</td>
<td>12.7</td>
<td>572.5</td>
</tr>
</tbody>
</table>
Table S3.
Linear model showing that there is no remaining effect of anthropogenic drivers (FacTrt) on the residuals (Residuals) of the mixed effects model of the log response ratio of temporal stability of productivity (lrr.S) as a function of the log response ratio of plant species richness (lrr.rich) in response to anthropogenic environmental changes.

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FacTrt</td>
<td>4</td>
<td>0.0232</td>
<td>0.005810</td>
<td>0.0976</td>
<td>0.9832</td>
</tr>
<tr>
<td>Residuals</td>
<td>333</td>
<td>19.8319</td>
<td>0.059555</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S4.
Effect of anthropogenic drivers of environmental change on the log response ratio of mean (lrr.mean), standard deviation (lrr.SD) and temporal stability (lrr.S) of productivity, and diversity (lrr.rich). Results are shown as mean effects with their 95% CI. Variables listed in boldface are those with effects significantly greater than zero; variables listed in italic are those with effects significantly lower than zero.

<table>
<thead>
<tr>
<th>Source</th>
<th>lrr.mean</th>
<th>lrr.SD</th>
<th>lrr.S</th>
<th>lrr.rich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effect</td>
<td>2.5%</td>
<td>97.5%</td>
<td>Effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity 16 vs. 1</td>
<td>-1.017</td>
<td>-1.072</td>
<td>-0.962</td>
<td>-0.604</td>
</tr>
<tr>
<td>Diversity 16 vs. 2</td>
<td>-0.700</td>
<td>-0.796</td>
<td>-0.604</td>
<td>-0.480</td>
</tr>
<tr>
<td>Diversity 16 vs. 4</td>
<td>-0.462</td>
<td>-0.522</td>
<td>-0.403</td>
<td>-0.240</td>
</tr>
<tr>
<td>N addition 270 kg ha(^{-1})</td>
<td>0.657</td>
<td>0.565</td>
<td>0.749</td>
<td>0.947</td>
</tr>
<tr>
<td>N addition 170 kg ha(^{-1})</td>
<td>0.599</td>
<td>0.507</td>
<td>0.691</td>
<td>0.752</td>
</tr>
<tr>
<td>N addition 95 kg ha(^{-1})</td>
<td>0.464</td>
<td>0.372</td>
<td>0.556</td>
<td>0.564</td>
</tr>
<tr>
<td>N addition 54 kg ha(^{-1})</td>
<td>0.368</td>
<td>0.276</td>
<td>0.460</td>
<td>0.477</td>
</tr>
<tr>
<td>N addition 34 kg ha(^{-1})</td>
<td>0.241</td>
<td>0.149</td>
<td>0.333</td>
<td>0.280</td>
</tr>
<tr>
<td>N addition 20 kg ha(^{-1})</td>
<td>0.148</td>
<td>0.057</td>
<td>0.240</td>
<td>0.140</td>
</tr>
<tr>
<td>N addition 10 kg ha(^{-1})</td>
<td>0.038</td>
<td>-0.054</td>
<td>0.130</td>
<td>-0.070</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>0.111</td>
<td>0.002</td>
<td>0.220</td>
<td>0.046</td>
</tr>
<tr>
<td>Fire</td>
<td>0.091</td>
<td>-0.072</td>
<td>0.255</td>
<td>-0.083</td>
</tr>
<tr>
<td>Herbivory</td>
<td>0.143</td>
<td>0.013</td>
<td>0.273</td>
<td>0.224</td>
</tr>
<tr>
<td>Water</td>
<td>0.149</td>
<td>-0.003</td>
<td>0.300</td>
<td>-0.107</td>
</tr>
</tbody>
</table>
References and Notes

31. Materials and methods are available as supplementary materials on *Science* Online.

