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Summary

1. Perhaps no other pair of variables in ecology has generated as much discussion as species

richness and ecosystem productivity, as illustrated by the reactions by Pierce (2013) and others

to Adler et al.’s (2011) report that empirical patterns are weak and inconsistent. Adler et al.

(2011) argued we need to move beyond a focus on simplistic bivariate relationships and test

mechanistic, multivariate causal hypotheses. We feel the continuing debate over productivity–
richness relationships (PRRs) provides a focused context for illustrating the fundamental diffi-

culties of using bivariate relationships to gain scientific understanding.

2. Pierce (2013) disputes Adler et al.’s (2011) conclusion that bivariate productivity–richness
relationships (PRRs) are ‘weak and variable’. He argues, instead, that relationships in the

Adler et al. data are actually strong and, further, that failure to adhere to the humped-back

model (HBM; sensu Grime 1979) threatens scientists’ ability to advise conservationists. Here,

we show that Pierce’s reanalyses are invalid, that statistically significant boundary relations in

the Adler et al. data are difficult to detect when proper methods are used and that his advice

neither advances scientific understanding nor provides the quantitative forecasts actually

needed by decision makers.

3. We begin by examining Grimes’ HBM through the lens of causal networks. We first

translate the ideas contained in the HBM into a causal diagram, which shows explicitly

how multiple processes are hypothesized to control biomass production and richness and

their interrelationship. We then evaluate the causal diagram using structural equation

modelling and example data from a published study of meadows in Finland. Formal analy-

sis rejects the literal translation of the HBM and reveals additional processes at work. This

exercise shows how the practice of abstracting systems as causal networks (i) clarifies

possible hypotheses, (ii) permits explicit testing and (iii) provides more powerful and useful

predictions.

4. Building on the Finnish meadow example, we contrast the utility of bivariate plots com-

pared with structural equation models for investigating underlying processes. Simulations illus-

trate the fallibility of bivariate analysis as a means of supporting one theory over another,

while models based on causal networks can quantify the sensitivity of diversity patterns to

both management and natural constraints.

5. A key piece of Pierce’s critique of Adler et al.’s conclusions relies on upper boundary

regression which he claims to reveal strong relationships between production and richness in

Adler et al.’s original data. We demonstrate that this technique shows strong associations in

purely random data and is invalid for Adler et al.’s data because it depends on a uniform data

distribution. We instead perform quantile regression on both the site-level summaries of the

data and the plot-level data (using mixed-model quantile regression). Using a variety of nonlin-

ear curve-fitting approaches, we were unable to detect a significant humped-shape boundary in
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the Adler et al. data. We reiterate that the bivariate productivity–richness relationships in

Adler et al.’s data are weak and variable.

6. We urge ecologists to consider productivity–richness relationships through the lens of causal

networks to advance our understanding beyond bivariate analysis. Further, we emphasize that

models based on a causal network conceptualization can also provide more meaningful guid-

ance for conservation management than can a bivariate perspective. Measuring only two vari-

ables does not permit the evaluation of complex ideas nor resolve debates about underlying

mechanisms.

Key-words: causal diagrams, causal networks, conservation, humped-back model, Nutrient

Network (NutNet), productivity–diversity, quantile regression, species richness, structural

equation modelling

A seemingly endless debate over bivariate
patterns

Ecologists have a fascination with patterns in ecological

data. At the same time, ecologists struggle to define reliable

generalizations. This struggle reflects the fact that commu-

nities and ecosystems represent heterogeneous collections

of species and genotypes and that their properties and

characteristics (e.g. species assemblages, mix of life-forms,

etc.) are contingent on many factors. Ecological theories

often serve to provide some basis for defining expected pat-

terns. However, debates about the generality of ecological

patterns and about underlying processes often go unre-

solved. In this paper, we demonstrate that bivariate pat-

terns and simple statistical descriptions of association

neither provide much information about underlying

processes nor are sufficient for guiding conservation.

Perhaps no other pair of variables has generated as

much discussion amongst ecologists as species richness and

ecosystem primary productivity. The debate over produc-

tivity–richness relationships (PRRs) provides an ideal con-

text for illustrating the fundamental difficulties of using

bivariate relationships to gain scientific understanding.

Visual impressions are part of the problem. A relevant

comparison can be drawn between the interpretations of

bivariate plots and the psychologist’s Rorschach test. The

basis for the classic Rorschach test (Rorschach 1998) is the

tendency for simple patterns to trigger complex interpreta-

tions in the human mind that depend on individual search

patterns and predispositions. The PRR debate shows that

visual examinations of bivariate plots evoke support for a

wide variety of alternative theories, depending on the view-

er’s predispositions. Psychological attachments make it dif-

ficult for some to consider alternative interpretations.

A discussion of two diametrically opposed critiques of

the results reported by Adler et al. (2011) clearly illustrates

this issue. Adler et al.’s conclusion that PRRs for 48 grass-

dominated communities were weak and variable triggered

simultaneous claims that the true relationship in the data

was either (i) strongly linear positive (Pan, Liu & Zhang

2012) or (ii) strongly hump-shaped (Fridley et al. 2012).

Grace et al. (2012a) responded by pointing out that scien-

tific objectives (specifically, theory confirmation vs. theory

evaluation) influence how data are interpreted, contribut-

ing to disagreements over evidence. That response also

emphasized that a focus on bivariate patterns can stand in

the way of making progress in understanding ecological

systems. The most recent criticisms of Adler et al. by

Pierce (2013) illustrate a need for further demonstration of

the inherent limitations to drawing complex interpretations

from simple patterns like bivariate plots.

We first provide more detail about the Adler et al.

(2011) study, as these details are central to the discussion.

Adler et al. analysed productivity and richness data col-

lected from 1126 plots in 48 herbaceous-dominated plant

communities spanning five continents. Data were collected

using standardized sampling methods to address objections

raised previously about studies that used meta-analysis

(e.g. Mittelbach et al. 2001). Adler et al. also analysed

data in a number of ways, anticipating that any single

approach could be criticized from some perspective. PRRs

were examined with the data summarized at three spatial

extents: (i) within sites, (ii) across sites within biogeograph-

ic regions and (iii) across all sites around the globe.

Within-site relationships took on all possible forms; most

were non-significant (34), five were positive linear, five

were negative linear and only one site showed a statisti-

cally significant humped relationship. Regional compari-

sons amongst sites found one region to demonstrate a

humped PRR, though the humped relationship depended

on highly altered (anthropogenic) sites being included in

the sample. Other within-region comparisons failed to

reveal humped patterns regardless of the inclusion of sites

representing particularly unique ecosystems (one saltmarsh

was included in the study). At the global extent, a statisti-

cally significant humped relationship amongst sites was

found (R2 = 0�11), but when anthropogenic sites and the

one saltmarsh in the data set were omitted, a positive lin-

ear relationship was found.1 In sum, Adler et al. concluded

that ‘productivity is a poor predictor of plant species

*Correspondence author. E-mail: gracej@usgs.gov

1While not reported by the authors, removal of only anthropo-

genic sites, without omitting the saltmarsh site, also supported a

positive linear PRR instead of a humped PRR.
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richness’ and recommended that future studies should

investigate ‘the complex, multivariate processes that regu-

late both productivity and richness’.

Pierce (2013) has re-examined the Adler et al. study and

makes a number of claims, as follows:

1. ‘. . . the original analysis demonstrated a significant uni-

modal [PRR] at the global scale. . . in agreement with

the classic humped-back model. . .’ (italics added for

emphasis)

2. Analysis of the Adler et al. data using upper boundary

regression shows a strongly predictive humped PRR

(R2 = 0�81 across all plots; R2 = 0�98 across all sites).

3. Adler et al. excluded from some analyses anthropogenic

sites and one saltmarsh, which are crucial to delimiting

the general PRR.

4. ‘. . . by abandoning the humped-back model ecologists

would be unable to inform conservationists as to the

conditions maintaining or suppressing, high species

richness’.

We respond to these claims in several ways. We begin

by reviewing the historical origins of the so-called hump-

back model of productivity and richness, which we then

translate into more explicit, testable statements. We then

go on to develop an example that illustrates why bivariate

descriptions of PRRs yield little definitive information.

Our example also shows the value of abstracting systems

as causal networks for clarifying ideas and structural equa-

tions for quantitative evaluation.

The ‘humped-back model’

To be clear, we do not consider ‘the humped-back model’

referred to by Pierce (hereafter, HBM) as simply a predic-

tion about the shape of the relationship between biomass

production and species richness. Numerous theories predict

a humped relationship between species richness and vari-

ables related to biomass production, and different theories

invoke different mechanisms (Abrams 1995). When Pierce

refers to the ‘humped-back model’, he only references publi-

cations by (Grime 1973, 2001; and Al-Mufti et al. 1977,

which is co-authored by Grime). We take that to mean that

the discussion at hand relates specifically to the particular

theoretical abstraction described by Grime, rather than

alternative models such as the ‘dynamic equilibrium model’

(Huston 1979), the ‘resource-ratio model’ by Tilman (1982),

or the ‘habitat template’ model of Taylor, Aarssen &

Loehle (1990). We should also point out that there are mod-

els and theories that predict other shapes of relationships

between productivity and richness. For example, theoretical

and mechanistic studies of diversity effects on richness

(Naeem et al. 1994; Tilman, Wedin & Knops 1996) imply a

monotonic positive contribution to the PRR. Biogeograph-

ic studies of richness along climate and energy gradients

have long predicted a positive linear PRR at coarse spatial

scales (reviewed in Hawkins et al. 2003) and perhaps even

at finer spatial scales (Gillman & Wright 2006). For the

purposes of responding to Pierce’s commentary, it is

important to be as clear as possible about the set of ideas

embodied in the phrase ‘the classic humped-back model’.

Most concisely, the humped-back model (HBM) is an

abstraction that represents a collection of ideas about the

processes and conditions favouring high levels of plant

species richness (Grime 1979, 2001). This abstraction is

represented by a kind of ‘picture’ (Fig. 1a) meant to sum-

marize the collective action of key processes; (i) domi-

nance, (ii) stress, (iii) disturbance, (iv) niche differentiation

and (v) the ingress of suitable species. Note that dominance

refers to ‘the tendency of larger plants to suppress the

growth and regeneration of smaller neighbours’, that is

competitive effects. The term stress is defined by Grime as

the effects of external constraints (e.g. abiotic conditions)

on productivity, while disturbance refers to the limitation

of biomass accumulation by its partial or total destruction.

The use of the phrase niche differentiation refers to ‘oppor-

tunities for complementary forms of exploitation and

regeneration’ afforded by spatial and temporal variations

in the environment and is discussed in terms of opportuni-

ties for species coexistence. The fifth process, the ingress of

suitable species, is described by Grime as being controlled

by the size of the reservoir of suitable species in the

(a)

(b)

Fig. 1. (a) Grime’s humped-back model (Grime 1973, 2001). Key

to processes: (i) Dominance; (ii) Stress; (iii) Disturbance; (iv)

Niche differentiation; (v) Ingress of suitable species or genotypes.

(b) The relationship between maximum standing crop plus litter

and species richness of herbs in habitats subject to various man-

agement regimes (Grime 2001, page 266).
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surrounding landscape and the rate of migration of species

into areas following disturbance.

The pictorial representation of the HBM (Fig. 1a) sum-

marizes ideas in the form of a two-dimensional (bivariate)

relationship between maximum potential species richness

and the seasonal maximum standing crop plus litter. Al-

Mufti et al. (1977) were the first to express the idea that

the collective effects of the processes proposed by Grime

(1973) to control species richness could be summarized by

a single predictor, standing biomass plus litter. In their

study (Al-Mufti et al. 1977), they plotted mean species

richness against seasonal maximum biomass (including live

biomass, standing dead and litter) for herbaceous plants

from 14 specifically selected sites that included the herba-

ceous layer in woodlands (ignoring the overstorey compris-

ing the majority of the biomass), grasslands and

communities dominated by tall herbs. Since that time, a

tradition has developed of evaluating the HBM (as well as

competing models) by empirically examining two-dimen-

sional plots of species richness vs. some measure related to

biomass production. Figure 1b shows a fairly typical

example (in our experience) of the kind of real-world data

presented as consistent with the HBM. Following the pub-

lication by Adler et al. suggesting (once again) that the

quantitative strength of association in such plots is weak,

Fridley et al. (2012) and Pierce (2013) interpreted that con-

clusion as an attack on Grime’s HBM and have staunchly

defended the HBM as informative and useful (even ‘vital’).

In this paper, we demonstrate why we urge scientists to

move beyond the HBM, abandon a fixation on bivariate

patterns and adopt a more sophisticated approach to the

problem of understanding the regulation of species rich-

ness.

An alternative conceptualization of systems –
causal networks

While the discussion of productivity and richness has

focused on the relationship between two variables, we

know that ecological systems are driven by numerous,

interconnected processes that operate simultaneously. One

approach to studying systems is structural equation model-

ling (SEM; Grace 2006; Grace et al. 2012b). A few defini-

tions may be useful here. The philosophy of SEM is based

on the ideas that (i) systems can be thought of as being

controlled by networks of causal processes (causal net-

works), (ii) our ideas and hypotheses about those networks

can be described in causal diagrams and (iii) where we have

data to represent some of the elements in a causal diagram,

we can empirically evaluate network hypotheses using

SEM. For the interested reader not familiar with SEM, we

provide additional information and a brief tutorial in

Appendix S1 associated with this paper.

Starting with Grime’s graphical representation of the

HBM (Fig. 1a), we can translate the simplest prediction of

the model into a causal diagram (Fig. 2a). This translation

summarizes the idea that maximum potential richness can

be predicted from maximum standing crop plus litter (total

biomass). The HBM further proposes that total biomass

conveys the collective effects of dominance, stress and dis-

turbance. We can elaborate the simple diagram in Fig. 2a

to show in Fig. 2b how the HBM relates to the empirical

pattern in Fig. 1b. Here, we see that an additional assump-

tion is required. We must assume that observed richness is

some function of the maximum potential richness (which is

a latent, unobserved quantity), since the HBM only claims

to predict the maximum potential richness (a point Pierce

emphasizes). We can represent that collective pair of ideas

(total biomass predicts potential richness and potential

richness predicts actual richness) as a simple probabilistic

model made up of two observed variables and a latent

mediator, maximum potential richness (Fig. 2c).

It is possible to develop a more complete causal diagram

that includes the processes mentioned by Grime along with

other logical assumptions (Fig. 3). In addition to dealing

explicitly with the four concepts listed by Grime (Fig. 1a),

we can recognize that stress effects should affect productiv-

ity while total biomass reflects both rates of production/

productivity and rates of biomass removal through distur-

bance. Both niche differentiation and the supply of species

are simply shown as influences on maximum potential

richness in this causal diagram, based on the written

descriptions in Grime.

Expressing ideas in causal diagrams helps to clarify

hypotheses about how processes are interconnected and

promotes less ambiguous statements of theoretical ideas.

Such diagrams also clarify how to test alternative possibili-

ties given available data. Using SEM, we can determine

the degree of support for proposed combinations of link-

ages and also ask whether the data suggest additional link-

ages. When additional links in a network model are

discovered, they imply the operation of processes not ini-

tially hypothesized to be important. To show how this

(a) (b) (c)

Fig. 2. (a) Causal diagram for the HBM shown in Fig. 1. Here,

we substitute ‘total biomass’ for ‘maximum standing crop + litter’.

The symbol U stands for other unspecified influences. (b) Elabora-

tion of causal diagram implied by empirical evaluations. (c) Statis-

tical model used in empirical evaluations. Variables in rectangles

are observed variables, while maximum potential species richness

is unobserved/latent. Episilon (e) represents prediction error.

Published 2014. This article is a U.S. Government work and is in the public domain in the USA., Functional Ecology

4 J. B. Grace et al.



works and where it can lead, we used SEM to evaluate a

model based on the causal diagram developed in Fig. 3

using data from coastal meadows in Finland (Grace and

Jutila 1999).

In the study reported by Grace and Jutila (1999), herba-

ceous plant species richness, total biomass and a number

of environmental characteristics were measured for 374 1-

m2 plots distributed amongst numerous grazed and un-

grazed meadows (grazing was treated as a dichotomous

variable). Amongst the environmental factors measured

were soil conditions and depth to water-table, which serve

here as indicators of soil favourability/stress and water

availability/stress. The supply of species in the surrounding

landscape was not quantified in this study, nor were indi-

cators of niche differentiation measured.

Figure 4 represents an initial SEM developed using the

available variables from Grace and Jutila (1999) and the

ideas in Fig. 3. Again, the fundamental prediction of the

HBM is that the effects of disturbance and stress on rich-

ness will be mediated through total biomass. For this

demonstration, we used simplifying assumptions (e.g., no

feedbacks). In particular, we assumed that the arrow link-

ing biomass to richness in the SE model represents

unknown mechanisms involving the impacts of established

dominant plants on light and soil resources and condi-

tions. We emphasize this point because the continuous

focus on biomass production in the literature has, in

effect, implied some direct effect of biomass on richness.

This is the kind of confusion that develops when one

focuses on bivariate descriptive relationships.

We used SEM procedures (Grace et al. 2012b) and the R

software (R Core Team 2013) to evaluate the hypothesis

represented in Fig. 4. For simplicity, linear additive specifi-

cations were used as approximating functions for what are

known to be relationships with more complex form.

Model-data discrepancies revealed that some linkages were

missing from the initial model, leading to a revised final

model with somewhat different form from the initial

(Fig. 5). Additional information about this analysis is pre-

sented in Appendix S1.

The SEM results imply a number of conclusions. As

hypothesized by the model, biomass was lower in grazed

meadows and increased with increasing soil favourability

and soil water availability. We also found support for a

negative effect of biomass on richness, which we assume is

an indirect effect mediated by unmeasured latent factors.

However, processes unrelated to variations in biomass also

affected richness (Fig. 5, direct paths from soil favourabil-

ity and water availability to richness). These results are

inconsistent with the basic assumption of the HBM that

effects of disturbance and stress on richness can be predicted

from total biomass. Finally, the full set of predictors in the

model explained variations in species richness in the land-

scape reasonably well (R2 = 0�55) and substantially better

than biomass alone (R2 = 0�14 obtained using a third-

order polynomial regression), concordant with previous

reviews (Grace 1999). Furthermore, the R2 from a polyno-

mial regression of Y on X does not represent the causal

effect of X on Y. In the case of a third-order polynomial,

X is being included in the model as if it was three variables

Fig. 3. Causal diagram based on the processes described by Grime

(2001) as related to the HBM. Other unspecified forces ‘U-vari-

ables’ not shown.

Fig. 4. Initial structural equation model that attempts to represent

the statistical expectations from the causal diagram in Fig. 3 while

using variables available in Grace and Jutila (1999). Error terms

not shown.

Fig. 5. Structural equation model found to be consistent with data

from Grace & Pugesek (1997). Numbers next to paths are stan-

dardized effects.
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(x, x2 and x3), some of which are standing in for other fac-

tors. Thus, while we can explain 14% of the variation in

richness from biomass alone, this number greatly misrepre-

sents any causal effect of biomass on richness and does not

predict any responses that would be expected from changes

in biomass.

Interpreting model results further, we see that grazing

has two distinct and offsetting effects on richness. First,

grazing indirectly promotes species richness by reducing

total biomass and lowering competitive effects of domi-

nance in the system (this is an indirect positive pathway

made of two links with negative signs, which when multi-

plied together yield an indirect positive effect). Secondly,

there is a direct path from grazing to richness that indi-

cates reductions in richness independent of total biomass,

perhaps a result of selective grazing effects on particular

species. We point out that bivariate plots do not permit

this kind of partitioning of direct and indirect effects.

The HBM makes a fundamental assumption that the

effects of stressors and disturbance in the system can be

predicted by biomass (Fig. 1a). However, we found the

two variables related to stress, represented in this analysis

by gradients in soil favourability and water availability, as

well as disturbance (grazing), to have unique and even

opposing types of direct influences on richness in the SE

model (Fig. 5). Model results imply that soil favourability

indirectly reduces richness through its positive effects on

total biomass. However, richness responds directly to

favourable soil conditions in the model. As with grazing,

again we see a pair of processes that are partly offsetting

because one pathway is positive and the other is negative.

Effects of water availability, in contrast, represent a differ-

ent set of relationships. Here, there is an indirect reduction

in richness where water availability leads to high biomass,

but there is also a general decline in richness with increas-

ing water availability, probably due to the detrimental

effects of soil flooding on potential richness (Gough, Grace

& Taylor 1994).

Aside from being more informative and predictive than

a bivariate plot, our SE model permits us to explicitly

demonstrate difficulties with interpreting bivariate plots.

The fundamental problem is elementary, and a basic tenet

of both linear algebra and statistics – the number of vari-

ables observed needs to exceed (by at least one) the num-

ber of parameters/processes of interest if we are to

estimate parameters in a model. Most would have first

encountered this idea as the principle that you need as

many equations as unknown parameters in a set of equa-

tions or else the system is ‘under identified’. In that case,

one is not able to obtain unique estimates for parameters.

We think that perhaps this principle’s implications for

interpreting bivariate patterns and relevance to the debate

over the PRR are not universally appreciated.

To illustrate the problem of trying to choose amongst

alternative models using bivariate plots, we started with

the model in Fig. 5 and then asked ‘What can we discern

about underlying processes from the bivariate relationships

between richness and total biomass?’ We then created

alternative models comprising subsets of the discovered

processes for Finnish meadows and simulated values of

richness assuming each of those models. The alternative

models chosen are indicated in Fig. 6. Note that from a

causal modelling perspective, all these alternatives (except

Model A) are misspecifications of the true model. Those

misspecifications would be readily detected using SEM

procedures. Figure 6 shows results from nine different

models (models A-I) that were estimated from the data

along with the bivariate PRR patterns implied by those

models. Model A represents the full model, and the plot of

richness versus total biomass closely resembles the pattern

in the raw data (Grace & Jutila 1999; Fig. 2). Model I rep-

resents a null model that fits only the mean for richness,

while retaining the distributional properties of the raw

data. What we hope is clear to the reader is that one can-

not discern the differences between models generating the

bivariate relations from simply looking at the bivariate

plots.

The kinds of results presented in this example are not to

be viewed as unique, but are instead typical for SEM stud-

ies. There are now many example applications of SEM to

ecological problems. Grace (1999) provided an early

review of SEM studies of plant species richness. More

recent examples involving richness and/or productivity

include Borer, Seabloom & Tilman (2012), Bowker, Maes-

tre & Escolar (2010), Carnicer et al. (2007), Cavieres et al.

(2013), Condon, Weisberg & Chambers (2011), Frainer,

McKie & Malmqvist (2013), Gazol et al. (2013), Klaus

et al. (2013), Lamb & Cahill (2008), Maestre et al. (2011),

Mokany, Ash & Roxburgh (2008), Paquette & Messier

(2011), Prober & Wiehl (2011), Rooney & Bayley (2011),

Schultz et al. (2011), �S�ımov�a, Li & Storch (2011), Socher

et al. (2012), Weiher (2003). We think that such studies are

consistently more informative and also provide for a much

more comprehensive explanation of system properties than

do bivariate patterns.

Upper boundary regression gives invalid results
for the Adler et al. data

Both Fridley et al. (2012) and Pierce (2013) commented

that the bivariate PRR presented in Adler et al. (2011)

appeared to them to be strongly humped. Pierce went on

to apply a statistical technique known as upper boundary

regression (Blackburn, Lawton & Perry 1992) to the data

from Adler et al. and reported strong predictive relation-

ships for boundary relations. Because much of Pierce’s cri-

tique of Adler et al. depends on this reanalysis, it is

important that the methods are appropriate for the data

being analysed. The standard approach to analysing

boundary relationships is quantile regression (Cade &

Noon 2003), which uses all the data in estimating relation-

ships in upper boundaries defined by various quantiles of

the y-values. Adler et al. included quantile regressions

in their analyses and reported the findings along with
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conventional regression results. Within sites, only one

humped boundary relationship was found out of the 48

examined. Pierce chose not to use quantile regression, but

instead upper boundary regression, which selects a non-

random subset of the data for independent analyses. Using

this method, he reports a very strong predictive relation-

ship (R2 = 0�81) across all plots (an analysis that ignores

the non-independence of plots sampled within sites).

Across sites at the global scale, quantile regression results

reported by Adler et al. indicated a weak but positive lin-

ear relationship for the 95th percentile. Only for the 90th

percentile could we find a humped boundary and, again it

was weak (R2 = 0�05) and of questionable statistical signif-

icance. In contrast, Pierce’s upper boundary regression

analysis across sites produces a virtually perfect fit to a

humped relationship (R2 = 0�98). How can two statistical

procedures both designed to quantify boundary relation-

ships lead to such radically different conclusions? As

always, the devil is in the details.

While quantile regression fits models to various portions

of the full data set (quantiles of the y-variable along the x-

axis), upper boundary regression involves defining bins

along the x-axis and then selecting some fixed number (not

some proportion) of maximal or upper values in that bin

while excluding data having lower values. While quantile

regression is compatible with a wide variety of x-variable

distributions, upper boundary regression has a strict require-

ment for the x-variable to be from a uniform distribution

and for the sampling to capture an equal (and adequate)

number of samples across the x-axis bins used for the analy-

sis. Adler et al. made it clear that both biomass production

and species richness were log-normally distributed in their

sample (histograms are shown in their Fig. 1). Grace et al.

(2012a) subsequently emphasized the challenges associated

with visually interpreting linear plots of log-normal

variates. What is important in the current situation is not

simply that the Adler et al. data fail (badly) to conform to

the strict requirements for valid inferences using upper

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 6. Models and simulated results. Dia-

gram shows paths referred to in Key to

Models. Also shown are the bivariate PRR

plots generated by each model. Total

biomass is expressed in grams per meter

squared.
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boundary regression, but that violating this assumption

strongly biases the test towards detection of concave-down

(humped) relationships and grossly distorts estimated

strengths of association.

How badly can the inappropriate use of upper boundary

regression bias results towards finding a humped PRR? A

simple simulation illustrates how upper boundary regres-

sion can produce evidence for a strongly humped relation-

ship even when dealing with two independent random

variables. If we draw 1000 values of two independent vari-

ables from independent distributions where the x-variable

is drawn from a uniform distribution, upper boundary

regression then shows (correctly) that there is no signifi-

cant relationship (Fig. 7a). However, when the x-variable

is drawn from some other distribution (here we use the

log-normal, consistent with Adler et al.’s data), upper

boundary regression tells us that a strong hump-shaped

relationship is present (Fig. 7b). This is a bit shocking,

given that we know the two variables are independent and

unrelated. Note that similar bias will occur if we draw x

from a normal distribution or any other distribution

except for the uniform.

There are additional problems with Pierce’s reanalysis of

the Adler et al. plot-level data, such as ignoring non-inde-

pendence of plots from the same site, thereby inflating

sample size and biasing the p-value downwards. The selec-

tion of upper boundary richness values introduces another

serious bias in that of the original 48 sites represented in

the data set, only seven remain in Pierce’s upper boundary

analysis. The bottom line is that, for multiple reasons,

Pierce’s analyses are invalid and misleading and, therefore,

do not provide any new, or stronger, evidence for a hump-

shaped relationship in the Nutrient Network data set.

Quantile regression results for the Adler et al.
data

While we do not believe quantile regression will lead to

clarification of the processes connecting richness and pro-

ductivity, we understand some wish to know whether a

more defensible methodology, like quantile regression, can

detect a humped upper boundary in the Adler et al. data.

A more complete description of the analyses we performed

is given in Appendix S2, while the R-code used and a copy

of the Adler et al. data are given in Appendices S3 and S4.

Quantile regression was performed on the site-level data

using the ‘quantreg’ package (Koenker 2013, version 5�05).
Figure S1 illustrates Ricker equation fit lines for quantile

regression applied to the site-level data. As summarized in

Table S1, results show that none of the relationships exam-

ined were close to statistical significance. A similar finding

was obtained using polynomial regression (second-, third-

and fourth-order models were considered), which has

greater flexibility to conform to nonlinear data.

Because plots are clustered within sites in the Adler

et al., data simple quantile regression is inappropriate for

the plot-level data. Geraci & Bottai (2013) describe a new

method for analysing quantile relationships in multi-level

data using mixed models (those with both random and

fixed effects). Their procedures, implemented in the ‘LQMM’

package, are summarized in Geraci (2013). Analyses were

implemented in R version 2�15�1, (R Core Team 2013)

using LQMM version 1�02. We considered a number of

equational forms for evaluating Pierce’s hypothesis that

the upper boundary of the regression of richness on bio-

mass production is humped. Ultimately, we only gave

serious consideration to equations that could be trans-

formed to linear additive form because of the limitations

of the quantreg and lqmm packages. We ended up choos-

ing the Ricker equation (Cade & Quo 2000; Bolker 2008)

as the best form for fitting quantiles in these data. This

choice is discussed in greater detail in Appendix S2. Evalu-

ation of plot-level data led to similar findings as found for

site-level data (Table S2). Again, none of the quantile rela-

tionships estimated were close to meeting classical criteria

for statistical significance.

Certainly, there have been numerous other individual

studies in which the bivariate relationship between biomass

(a) (b)

Fig. 7. Example visualization of upper boundary regression applied to two independent random variables where (a) the x-variable is

drawn from a uniform distribution and (b) the x-variable is drawn from a log-normal distribution. Upper boundary regression applied to

random data that is not from a uniform distribution (e.g. as in b) leads to the conclusion that there is a strong, nonlinear relationship

between variables, despite the fact that none exists. In this case, to be consistent with Pierce, we fit a Lorentzian three-parameter model to

the data. Variance explained for the random data in panel (b) using upper boundary regression is 0�45.

Published 2014. This article is a U.S. Government work and is in the public domain in the USA., Functional Ecology

8 J. B. Grace et al.



production and species richness were found to be modal

and non-random (see Grace 1999 for a review). It is easy

to understand why a visual examination of the Adler et al.

data would lead one to suspect that some sort of signifi-

cant boundary relationship might exist for these data. Our

analyses, however, do not show a clear relationship

between biomass production and richness. As we empha-

sized earlier, even if we were able to detect a significant

humped relationship in the Adler et al. data, it would not

move us forward in our understanding of causal relations.

Site inclusion in analyses

A second focus of Pierce’s critique is on our decision to

present a variety of results from analyses of different sub-

sets of sites. Specifically, we showed that the shape of the

PRR is sensitive to the inclusion of what we termed

‘anthropogenic’ sites, which we defined in the main text

and the legend of Fig. 2 in Adler et al. as ‘pastures, old

fields and restored prairies’. In contrast to all the other

sites in our data set, these anthropogenic sites were either

cultivated (the old fields and restored prairies) or seeded

(pastures). Because of their land-use history, we worried

that these sites might have much smaller species pools than

all the other sites which were never converted, cultivated,

or seeded, though many are managed with grazing or

burning (these managed sites were included in all analy-

ses). In fact, the anthropogenic sites do tend to have lower

species richness than the rest of our sites (Fig. 2 in Adler

et al. 2011). Including the anthropogenic sites provides evi-

dence for a hump-shaped PRR, but we cannot determine

whether this reflects the influence of competitive exclusion

at high productivity or the influence of small effective spe-

cies pools at these sites. Recall that we presented both

results with these sites included as well as results with these

sites excluded, anticipating correctly that we could be criti-

cized for either approach (as we were by Pan et al., 2012

and Fridley et al. 2012).

Pierce also questions the removal of the one saltmarsh

site in our data set from some of the analyses. We take this

opportunity to better explain our justification for removing

the site. Our reasoning was based on (i) the fact that very

few plant species have evolved the tolerances required to

live in habitats both flooded and saline (i.e. saltmarshes)

and, thus, species pool sizes are very small (Gough, Grace

& Taylor 1994) and (ii) a PRR curve based on the inclu-

sion of a saltmarsh might be criticized for implying that

the observed low richness for a saltmarsh results from

competition instead of low pool size.

While Pierce (2013) cited Fridley et al. (2012), who also

questioned our decision to present the analysis of the

reduced data set, he did not cite Pan, Liu & Zhang (2012),

who criticized us in the same discussion for including the

anthropogenic sites and the saltmarsh in some of our

analyses. In fact, Pan, Liu & Zhang (2012) argued for cull-

ing even more sites to purify the sample, which leads to

strong support for a positive linear PRR. Collectively,

Fridley et al. (2012) and Pan, Liu & Zhang (2012) show

how particular site selection criteria produce support for

different hypotheses, which is why we presented multiple

analyses to illustrate that our general conclusions were

robust to such decisions. Ultimately, the results from all of

our analyses support the conclusion that the relationship

between productivity and richness is ‘weak and variable’.

The strongest association observed, the global comparison

of all sites, explained only 11% of the observed variation

in richness, hardly the strength of relationship needed to

be the basis for effective conservation management.

What is most helpful for conservation decision
making?

Pierce’s focus on management implications of productiv-

ity–richness relationships (PRRs) surprised us. Specifically,

he appears to interpret our conclusion that PRRs are

weak and variable as a recommendation that European

land managers should stop mowing, grazing or burning

pastures to maintain high plant species richness. How

could our analysis of a global pattern be interpreted as a

specific management recommendation? Perhaps through

the following logic: (i) A hump-shaped PRR indicates that

competitive exclusion limits species richness at high levels

of biomass production; (ii) therefore, managers should

reduce biomass production to promote species richness;

(iii) conversely, if the PRR is not hump-shaped, then com-

petitive exclusion does not limit richness and management

to reduce biomass production should not promote rich-

ness.

The crucial assumption in this logical chain is that we

can make inferences about the role of competitive exclu-

sion from the observed, broad-scale relationship between

productivity and richness. As we have shown, no single

underlying process, or mechanism, can be inferred from

the simple bivariate relationship between productivity and

richness. In other words, the presence of a hump would

not offer strong evidence for the importance of competitive

exclusion, nor would the lack of a hump provide evidence

against it. Current management techniques in European

pastures are effective in spite of, not because of, the infor-

mation provided by bivariate PRRs.

To further persuade readers that moving beyond the

bivariate focus of the HBM is advantageous, we illustrate

some of the features of a quantitative case study. Models

based on causal network principles, as in Fig. 5, permit us

to assess the predicted sensitivity of richness to variations

in both management (grazing in this case) and other condi-

tions in the landscape. While only grazing is managed

actively at present in these systems, general conservation

efforts might be importantly informed by knowledge of

how strongly site conditions such as soil favourability and

water availability impact richness. We illustrate the predic-

tive implications of our model in Fig. 8 (see Grace et al.

2012b and Appendix S1 for a discussion of interventions

in SEM).
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In this illustration, the histograms in Fig. 8 show predic-

tions (omitting uncertainties) for how richness in the collec-

tion of plots sampled might respond if it were possible to

change conditions. Two things drive these predictions, (i)

the prediction coefficients and (ii) the distribution of values

of the predictors; thus, these predictions apply only to the

sample, not to some larger population. Comparing Scenar-

ios B to A, results indicate that if it were somehow possible

to protect sites from selective grazing impacts (perhaps

through altered grazing rotations), no major increase in

richness could be obtained. That said, there is a substantial

range of richness values throughout the landscape due to

the importance of other factors (both known and

unknown). One of the most important other factors in the

control of richness is soil favourability. Our Scenario C

shows that if sites with the lowest level of favourability

were chosen for conservation, a greatly reduced range of

richness values could be expected, providing less conserva-

tion opportunities. On the other hand, if sites with favour-

able soil conditions were selected, much greater levels of

species richness might be protected in the local sites (Sce-

nario D). Skipping to Scenario F, results suggest that

insufficient water is not limiting for most sites in the study,

though the model results (Fig. 5) and further analyses tell

us that for those few sites subject to frequent flooding

(excess water availability), richness can be greatly reduced.

Finally, Scenario E predicts that if, for example mowing

or haying were used to maintain optimal biomass levels (to

values below 250 g/m2, based on the bivariate peak), the

impact on average richness would be minimal (though sen-

sitivity analyses indicate maximal richness would be con-

strained for a small percentage of the sites). Through these

scenarios, we show that by using SEM, we are able to

make quantitative predictions customized for different sets

of conditions and to incorporate the influences of grazing,

soil favourability and water availability into computations.

Finally, natural resource managers certainly benefit

from the insights provided from ecological generalization;

however, real-world conservation plans consider the many

factors that will influence local responses to management

(Theobald et al. 2000). Pierce’s (and the HBM’s) focus on

boundary relations implies that one only has to manage

biomass to manage richness. Such a prediction is danger-

ously misleading. Even for the case of managing biomass,

Pierce’s analysis fails to provide useful information. We

must point out that Pierce’s regression selects only 7 of the

48 sites for estimation of the boundary relation. How does

one propose to inform management for the 41 sites not

included in the modelling effort? In contrast, our illustra-

tion in Fig. 8 provides predictions for all locations and

conditions. We would argue that it is information of this

sort that is more relevant for decision makers.

Conclusions and implications

Adler et al. presented two general conclusions about the

quest for a canonical PRR relationship: (i) the body of

empirical evidence suggests the bivariate association is

Fig. 8. Intervention scenarios and fore-

casts. Diagram shows paths referred to in

Key to Scenarios. The guide to scenarios

uses Pearl’s (2009) ‘do’ operator to describe

the paths whose influence is set equal to

zero or to its maximum value. Also shown

are the frequency distributions for richness

estimates generated in each scenario.

Arrows in frequency plots indicate location

of medians.
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weak and variable and (ii) we should turn our attention to

the study of more complex models. Grace et al. (2012a)

went on to state that even if productivity and richness were

strongly and consistently correlated, we still would be

unable to resolve underlying mechanisms and unable to

choose amongst the many proposed theories and models.

In this paper, we support the first of these conclusions by

showing that the analytical approach, results and empirical

conclusions presented by Pierce are invalid and that quan-

tile regression, a more proper approach to the task, fails to

find a strong relationship. Thus, we conclude once again

that there is no secret, strong signal hidden in the bivariate

data presented by Adler et al., just modest associations.

Clearly, our pleas for scientists to ‘focus on fresh, mech-

anistic approaches to understanding the multivariate links

between productivity and richness’ have only been heard

by some. We appreciate that this is a complex message and

involves ideas and procedures that are unfamiliar to many.

One approach to developing and testing more complex,

multivariate hypotheses is structural equation modelling.

While the roots of SEM lie in biology, these methods have

yet to be widely incorporated into the quantitative training

of biologists. Therefore, we have used this paper as an

opportunity to demonstrate what a causal network per-

spective can bring to the study of productivity–richness

relations (though our analysis is admittedly incomplete).

The HBM leads to only the simplest of predictions and

permits only the most basic quantitative test, that there is

some non-random, modal relationship between biomass

and richness. As a result of this simplicity, it takes only

modest evidence to ‘support the HBM’. Pierce uses one of

the statistically significant results reported by Adler et al.

(ignoring many non-significant results) to declare that our

results are ‘in agreement with the classic humped-back

model’. This is despite the fact that the vast majority of

observed variation in species richness in that particular

analysis could not be related to biomass production. We

should be concerned that the strongest support for the

HBM in the original Adler analysis left 89% of the varia-

tion unexplained.

Stated quite frankly, we are not content with the lack of

progress on this topic over the past 40 years (since Grime

1973). As discussed in Chapter 12 of Grace (2006), scien-

tists and the public should expect ideas to mature over

time, becoming less ambiguous, more completely under-

stood and more predictive. We should also expect debates

about competing ideas to be resolvable. Yet, here we are

in 2014 discussing the same simple abstraction as in 1973.

We see no evidence that any new evidence or ideas have

led to an evolution of the HBM, nor is there any sign that

the debate is moving towards reconciliation.

The simplistic nature of the HBM not only hinders sci-

entific progress but also limits its use for advising manag-

ers and decision makers. We live in a quantitative age. It is

not sufficient to say only that the eutrophication of sys-

tems will lead to a reduction in maximum potential species

richness. Managers expect science to say more precisely

how much change will lead to what quantity of impact,

which sites and systems will be most impacted, and when

thresholds will be crossed (Mitchell et al. 2014). The HBM

produces no guidance of that sort. In contrast, an

approach based on causal networks and structural equa-

tion models does permit such refined evaluations and fore-

casts, as we briefly demonstrate in this paper (for a more

detailed example, see Grace et al. 2012b, Fig. 12 for spe-

cific predictions of thresholds for eutrophication impacts

in National Parks).

Perhaps of greatest concern to us is the continuing

emphasis on compiling even more data on only two vari-

ables, total biomass and richness. Such efforts are, at best,

inefficient ways of clarifying understanding and, at worst,

lost opportunities to collect the data needed for more

informative and predictive models. We hope that this

paper will encourage other researchers to get over the

hump and examine more complete hypotheses using the

new methods that are available.
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