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Abstract Eastern red cedar (Juniperus virginiana)

establishment increased dramatically in the tallgrass
prairie biome of North America during the last

30 years. Since many of the remaining remnant

prairies occur on steep, dry, and nutrient poor sites,
threatened by the invasion of native and non-native

woody species, it is important to understand how an
invasive species such as eastern red cedar influences

key environmental factors that may determine the

future trajectory of these systems and whether abiotic
and biotic components of the system are resilient

following cedar removal. To address these issues we:

(1) investigated the influence of eastern red cedar on
micro-environmental factors; (2) evaluated how these

micro-environmental factors responded to eastern red

cedar removal; and (3) assessed the effect of eastern
red cedar on herbaceous species germination and

distribution. The invasion of eastern red cedar was

associated with lower surface light availability and

soil temperature, as seen in prior studies, but

otherwise had effects distinct from those observed
in prior studies. There was no effect of cedar on soil

pH, and unlike prior studies, cedar patches had higher

soil moisture compared to native C4 prairie grass
plots. Moreover, these effects had strong spatial

signatures, with impacts of invasion on micro-envi-
ronment and native vegetation differing dramatically

with slope position and aspect. Three years after

eastern red cedar was removed, micro-environmental
factors and species composition became similar to the

tree-free grass-dominated plots, indicating a signifi-

cant capacity for recovery following possible cedar
control. In a broader context, this study sheds light on

the pathways and mechanisms driving the impacts of

this biological invasion on dry, steep, nutrient poor
systems and illustrates the capability of these systems

to recover once the invading species is removed.
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Introduction

Woody vegetation has increased in abundance in the
Great Plains and prairie-forest border region of the

United States over the last century at the expense of

relatively tree poor systems such as prairies and
savannas (Bragg and Hulbert 1976; Hoch and Briggs
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1998; Briggs et al. 2002b). Eastern red cedar (Juni-
perus virginiana, Carl Linnaeus), even though it is

one of the most widely distributed conifers in the

United States (Fowell 1965), while native, was
historically not abundant in the prairie forest border

region (Curtis 1959; Bragg and Hulbert 1976) because

it is inhibited by fire. Eastern red cedar has increased
dramatically in this region with the advent of fire

suppression and decline of large ungulate populations

(Bragg and Hulbert 1976; Onmsbee et al. 1976; Hoch
and Briggs 1998; Briggs et al. 2002a). Schmidt and

Leatherberry (1995) found that between the North

Central Forest Inventory and Analysis (NCFIA)
periods of 1962 and 1990 forest land cover increased

by one million hectares in Illinois, Indiana, Iowa, and

Missouri. A major component of this increase was
eastern red cedar invasion into open grassland systems

(Ferguson et al. 1968; Schmidt and Leatherberry

1995; Batek et al. 1999). Increases in fragmentation,
suburbanization, and seed sources act as a positive

feedback mechanism for this process by both increas-

ing the invasion of eastern red cedar to the grassland
community and decreasing land managers’ ability to

use fire as a management tool (Coppedge et al. 2001).

Disturbances such as fire may play a role in
maintaining historical plant associations (Kota et al.

2007; During and Willems 1986). Eliminating this

disturbance alters the ecological conditions on a site
allowing for native and non-native species once

absent or under-represented to invade and potentially

dominate. Recently much discussion has centered on
the terminology of invasion biology often distinguish-

ing between native and non-native species invasions

(Falk-Petersen et al. 2006). However, from the
perspective of the conservation of a declining eco-

system, the impact of the invasion on ecosystem

structure, composition, and function becomes the
focus. As long as the dominance of one species, either

native or non-native, is associated with loss of species

richness the corresponding impact on community
composition is similar (Meiners et al. 2001). Similar

to other native and non-native invasive species
Eastern red cedar invasion into the prairie system,

even though it is native to the region, has multi-scale

impacts including homogenization of community
composition, altered species habitat, altered biogeo-

chemical cycles and modification of disturbance

regimes at a regional scale (Broadfoot 1951; Norris
et al. 2001; Briggs et al. 2002a; Siemann and Rogers

2003; Reinhart et al. 2006). Large scale impacts such
as these are characteristic of the threat to biodiversity

that center around the biological invasions of non-

native invasive species that has become the center of
the biological invasion research currently (Blossey

1999) and therefore the invasion of a native species

such as eastern red cedar poses a similar threat. The
mechanism of invasion, impact of invasion, and the

pathways that lead to system level impacts of eastern

red cedar invasion are similar to those outlined for
many non-native biological invasions (Siemann and

Rogers 2003; Didham et al. 2005).

Previous studies provide useful information about
the litter dynamics and canopy effects of eastern red

cedar invasion in areas where it dominates flat to

rolling and/or highly degraded sites. However, there is
little information available on how eastern red cedar

invasion affects steep, dry, nutrient-poor, intact prairie

systems; and even less regarding the resilience of the
system following removal of cedar. Of the remaining

intact prairie or savannas nationwide, most occur in

dry, nutrient-poor, shallow soils, and/or steep areas
that were unsuitable for agricultural purposes. The

effects of invasion may differ in these types of

systems compared to flatter areas because of the
effects of slope and of the existing soil properties.

Directional effects, including those involving soil

water, may be much more important on steep slope
than flat ecosystems. It is critical to long-term

maintenance and protection of the remaining prairie

and savanna ecosystems to understand the effects of
invasion on environmental conditions that may ame-

liorate or exacerbate the future success of eastern red

cedar, and hypothetically move these systems into a
new alternative stable state (Frelich and Reich 1999).

Biological invasions can alter environmental vari-

ables including sunlight and soil properties such as
moisture, nitrogen, and Ph (Siemann and Rogers

2003; Batten et al. 2006; Reinhart et al. 2006). Prior

studies illustrate that eastern red cedar cover charac-
teristically results in increases in soil exchangeable

Ca and decreases in soil moisture and soil temper-
ature (Spurr 1940; Arend 1950; Broadfoot 1951;

Vimmerstedt 1968). In these studies of abandoned

fields, eastern red cedar decreased light penetration
and hence soil temperature and decreased rain

penetration leading to decreases in soil moisture.

Soil calcium content generally increased as eastern
red cedar became established (Spurr 1940; Broadfoot
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1951), presumably the result of the relatively (com-

pared to pine and most oak species) high calcium

content of the eastern red cedar litter (Arend 1950;
Vimmerstedt 1968). Increased soil calcium and

findings of higher excess-base levels (base content

remaining after decomposition) could explain the
increase in soil pH observed under eastern red cedar

trees (Broadfoot and Pierre 1939). Additionally,
eastern red cedar decomposition rate is slower than

that of common prairie grasses potentially affecting

fundamental ecosystem processes such as nitrogen
cycling (Broadfoot 1951; Norris et al. 2001).

The current study was designed to explore how

invasion of the native eastern red cedar affects the
bluff prairie ecosystem by changing structure and

species composition and thereby affecting light

availability, nutrient cycling and other soil properties.
We investigated the issues surrounding eastern red

cedar invasion through a 3-year field study examining

soil exchangeable base-cation concentrations, soil
nutrient concentration and dynamics, and composi-

tion patterns under three different treatment

conditions: (1) the presence of eastern red cedar trees
(TREE plots), (2) the absence of eastern red cedar

trees (GRASS plots), and (3) removal of existing

eastern red cedar trees at the beginning of the
experiment (REMOVAL plots). Due to the differ-

ences in topography between these bluff prairie

systems and other systems examined in prior biolog-
ical invasion research, treatments were further

divided into five categories based on slope location

or direction around the eastern red cedar trunks

(up-slope, right-slope, left-slope, down-slope and

center; (Fig. 1), leading to the following series of

questions: How does eastern red cedar presence alter
light availability, nutrient dynamics, soil moisture,

soil temperature, and soil base cations and is the

magnitude of these effects influenced by slope
position around the tree (Fig. 1)? Once the eastern

red cedar tree is removed, do environmental factors
begin to approach those in areas unaffected when

compared to areas where eastern red cedar remains?

Do the effects of eastern red cedar on environmental
factors such as light availability, soil moisture, and

soil temperature affect ground layer plant species

germination and distribution? Likely one of the most
important portions of this study, from a conservation

aspect, is the examination of how prairie systems

respond once eastern red cedar is removed, helping to
answer questions relevant to the recovery of this and

other dry nutrient poor systems. This will also help

distinguish aspects of eastern red cedar tree invasion
that are simply due to the presence of the tree canopy

from the possibly longer lasting aspects that are due

to changes in soil properties and litter chemistry.

Methods

Study site and vegetation description

The research area consists of bluff prairie plant

communities on extremely shallow soils that are N

and water limited (Minnesota Department of Natural
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Fig. 1 Diagram outlining plot location based on slope position
for each treatment (GRASS plots-areas within prairie without
eastern red cedar, REMOVAL plots-areas where eastern red
cedar tree was removed, and TREE plots-areas with eastern red

cedar present). Slope positions include center of GRASS plots
or stump (TREE and REMOVAL plots), down slope, left slope,
right slope, and up slope
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Resources 2005). The taxonomic class of the soils on
this site is loamy-skeletal, carbonatic, Entic Hapludolls

of the Brodale series (United States Department of

Agriculture Soil Conservation Service 1994). These
soils are excessively drained very fine sandy loam with

low available water capacity on south-southwest

facing steep slopes (35–45%) (United States Depart-
ment of Agriculture Soil Conservation Service 1994).

The research sites lie within the Minnesota Department

of Natural Resources (2005). Ecological Classification
System Bluffland Subsection, of Minnesota in Good-

hue (lat. 44.52"N, Long. 92.53"W and lat. 44.49"N,

Long. 92.44"W) and Winona (lat. 44.18"N, Long.
91.99"W and lat. 44.19"N, Long. 91.99"W) counties.

Average rainfall from May to August during the 3-year

span of this study was 59.0 cm and average temper-
ature was 19.3"C during the 3-year span (University of

Minnesota Extension 2005).

Four bluff prairie sites were randomly selected
from a list of bluff prairies with public ownership,

south to southwest facing aspect, no current history of

grazing (last 40 years), dominated by prairie species,
and location at approximately 305 m elevation. East-

ern red cedar stem density ranged from 56.7 to 63.1

stems/hectare, the average stand age was 40–35 years
(Minnesota Department of Natural Resources 2008).

Experimental design

To determine the effects of eastern red cedar on the

bluff prairie system, nine 4 m2 plots on each of the four
bluff prairie sites were selected: (1) three plots with

eastern red cedar (TREE plots), (2) three plots where

eastern red cedar was removed (cut) at the beginning
of the experiment (REMOVAL plots), and (3) three

plots showing no evidence of eastern red cedar

presence (GRASS plots). All eastern red cedar trees
were identified on each bluff and the TREE and

REMOVAL treatments were randomly selected from

these. GRASS plots were randomly located within
areas unaffected by eastern red cedar presence. Trees

were cut at the base of the trunk no more than 10 cm
above the soil and removed. Soil remained undisturbed

by this method of tree removal. Average age of trees

sampled in TREE plots was 36.7 years and the average
age of trees removed from REMOVAL plots was

38.67 years. Four 0.5 m 9 0.5 m plots were estab-

lished at the drip line of each TREE and REMOVAL
plot (up slope, down slope, and one on either side of the

tree) and similarly 1.5 m from the center of each
GRASS plots and one plot was established at the trunk

of TREE and REMOVAL plots and at the center of

GRASS plots (Fig. 1). Environmental data were
measured in each of these plots, including soil net N-

mineralization, pH, exchangeable cations, carbon (C),

and nitrogen (N); light availability at 2-m level and
ground level; and bi-weekly soil moisture and tem-

perature during the growing season.

Soil nutrients and other characteristics

Net N-mineralization and net nitrification were mea-
sured (2003, 3 years post cut) with semi-open in situ

incubations using PVC plastic pipes (Reich et al.

2001). Measurements were taken at eight sampling
points along each slope position transect, but[15 cm

from treatment plots. Each pipe (2 cm diameter) was

inserted into the soil to a depth of only 6 cm because
of the extremely shallow soils. At each sampling point

a pair of tubes were used, one removed on June 1

without incubation, and the second removed on June
30 after a 30-day incubation. All cores were processed

using the analysis technique outlined by (Reich et al.

2001) and extracted using one molar KCL.
Samples were analyzed for NO3

- and NH4
?

colorimetrically on an Alpkem Rapid Flow Analyzer

(Research Analytical Laboratory at the University of
Minnesota. St Paul, Minnesota). Net N mineralization

was defined as the difference between extracted N

over the same 30-day incubation in the two cores.
To provide an average measurement of the ambient

moisture supply, percent volumetric soil water content

was recorded every other week during the growing
season every year of the 3 year experiment using a

HydroSense meter (Campbell Scientific, Australia

Pty. Ltd) at the same eight sampling points where net
N-mineralization and net nitrification were measured.

The HydroSense meter measures the dielectric per-

meability of the soil. The probe was inserted into the
soil surface ten times for each of the plots at an angle

of approximately 20" to assure all plots were
measured at the same depth (approximately 6 cm

due to the shallow soils) and then averaged.

The Research Analytical Laboratory at the Uni-
versity of Minnesota (St. Paul, Minnesota) analyzed

soil samples for pH, exchangeable cations, total C

and N from separate cores. Soil pH was determined in
deionized water (5gsoil/5mlwater) and exchangeable
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cations were determined using extraction with
ammonium acetate (3gsoil/30ml1 M ammonium acetate)

followed by ICP. Total N (300 mg sample) was

determined using the Dumas method with a LECO
FP-528 Nitrogen Analyzer. Due to the calcareous

nature of the samples, total C was determined (5 g

sample) using combustion where the evolution of
CO2 was measured by IR spectrum absorption and

then inorganic carbon was measured by addition of

phosphoric acid. Organic carbon was measured as the
difference between total carbon and inorganic carbon.

Canopy

At the end of the 3 year experiment in July 2003

canopy openness was measured 2 m above ground
surface and at ground surface in all plots using a

Sunfleck Ceptometer Plant Canopy Analyzer (Deca-

gon Devices Inc. Pullman, WA) measuring every 18
degrees over 360 degrees for each plot. Measure-

ments were made at mid-day under conditions of full

sunlight. Above and below canopy measurements
were determined by moving the sensor into open

conditions and then back under the canopy.

Species percent cover and germination

The absolute percent cover of extant vegetation in each
plot was measured at the end of the 3-year experiment

in June 2003 using a 0.5 m 9 0.5 m square. For each

species percent cover was estimated to the nearest 1%.
Indicator species were recorded and placed into one of

four categories (Curtis 1959; Gleason and Cronquist

1991; Minnesota Department of Natural Resources
2005), based on species typically found in: (1) prairie

systems (native species including woody plants,

grasses and forbs), (2) forested systems (native
species), and (3) non-native species. The percent

bare-ground was also recorded. Exposure of bare-

ground is important in the bluff prairie system due to
the susceptibility of the area to soil loss from runoff;

hence bare-ground is included in the categories. The
eastern red cedar cover was measured in the tree plots

through canopy measurements.

Statistical analysis

The site, treatment, and slope position effects were
analyzed using categorical variables. Plot level

environmental factors were analyzed using a full
factorial ANOVA to test for differences between site,

treatments (GRASS, REMOVAL, and TREE), slope

positions (center, down, left, right and up), and
treatment 9 slope position interactions. Tukey’s

HSD (Honestly Significant Difference) test was used

to further explore differences in slope position. Net
N-mineralization and net nitrification were analyzed

in relation to plot level environmental factors such as

soil moisture, soil temperature, exchangeable base-
cations, total soil carbon, soil C/N, and soil N.

The effect of the environmental factors measured

on species germination and distribution was analyzed
using F-tests based on linear regression. Species

composition was analyzed in relation to all environ-

mental factors using similar multiple linear
regression. Factors were examined for collinearity

and those that are, were dropped. To examine the

relationship among the remaining variables a back-
ward stepwise multiple-linear regression with partial

F values was used (Weisberg 1985).

Results

Statistical analysis indicated that site was not signif-

icant and there were no interactions between site and

treatments (GRASS, REMOVAL, and TREE) or
slope location (up-slope, left-slope, right-slope,

down-slope, and center), thus all further results

analyzing treatments and slope location are reported
as averages across all four sites. Slope position was

analyzed using all five positions (up-slope, left-slope,

right-slope, down-slope, and center) indicating no
significant differences between left, right, and center

slope. The data was re-analyzed using only up, down,

and center slope locations and the results were similar
to the analysis of all five slope positions. Therefore

results are presented for the up, down, and center

slope positions.

The effect of eastern red cedar presence
and removal on environmental factors

Influence of tree canopy

Soil moisture was significantly higher (P B 0.001)

and soil temperature and light availability
(P B 0.001) were significantly lower in the TREE
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plots than in GRASS plots and REMOVAL plots
(Table 1). Soil moisture, soil temperature, and light

penetration showed significant differences according

to position and there were significant treat-
ment 9 position interactions for these variables

(Table 1). Slope position was a significant factor in

the TREE plots but not in the GRASS plots for
several of the environmental factors measured. The

Tukey’s HSD analysis indicated that the down slope

position was consistently different showing higher
soil temperature, light, and nitrification levels and

lower soil moisture than the up-slope and center-
slope positions (Table 2).

Biogeochemical consequences

Soil exchangeable base cations including potassium,

calcium, and sodium were higher in TREE than in
GRASS plots ranging from 10% higher in the case of

calcium to more than 100% higher in the case of

sodium. Soil total C content was approximately 14%
higher in GRASS plots than in TREE plots, but

organic C was 13% higher in TREE than GRASS

plots. Net N-mineralization and net-nitrification were
lower beneath trees than in the GRASS plots. In the

plots where eastern red cedar was removed

(REMOVAL plots) exchangeable base cations, net
N-mineralization, and net nitrification were not

significantly different than GRASS plots. Eastern

red cedar presence did not influence the soil pH in
this study (Table 1).

In addition to examining slope position in the

TREE plots and GRASS plots separately, the rela-
tionship between slope position in the TREE plots

and GRASS plots was examined for those factors that

indicated significant interactions (Table 1). The down
slope position of the TREE plots was not significantly

different than any slope position in GRASS plots for
soil moisture, soil temperature, and net-nitrification

measurements.

The effect of eastern red cedar on plant

composition and distribution

The TREE plots showed much lower prairie species

cover but higher percent cover of woodland species,

bare-ground, and non-native species than GRASS
plots (P B 0.001), and the REMOVAL plots showed

percent cover measurements between the two treat-

ments trending closer to the GRASS plots than the
TREE plots (Fig. 2). The only species composition

metric in REMOVAL plots that was not significantly

Table 1 Plot level environmental factors (average weekly soil
moisture as % volumetric water content and temperature at
6 cm depth, net N-mineralization, net nitrification, Calcium
(Ca), total Carbon (C), light availability in full sunlight at 2-m

level above the ground and ground level, and soil pH) showing
significant differences for GRASS, REMOVAL (eastern red
cedar removed), and TREE (eastern red cedar present) plots,
significant main effects and interactions

Treatment

Environmental factors GRASS REMOVAL TREE Treatment
effects P [ F

Position
effects P [ F

Interactions
P [ F

Calcium (mg/kg soil) 3,558 ± 214b 3,743 ± 210ab 4,038 ± 199a NS NS NS

Moisture % volumetric
water content

12 ± 1.2b 10 ± 1.1c 16 ± 1.5a 0.0001 0.0001 0.0001

Temperature ("C) 19.2 ± .6a 19.4 ± .6a 17.2 ± .9b 0.0001 0.0001 0.0001

Carbon (mg/kg soil) 7.37 ± .16a 6.95 ± .13b 6.99 ± .14ab 0.009 0.0001 NS

Net-N-mineralization
(mg N m-2 day-1)

11.0 ± 1.67a 8.8 ± 1.9a -9.1 ± 1.96b 0.0001 NS NS

Net-nitrification (mg
NO-3 m-2 day-1)

4.63 ± .96a 7.06 ± .91a -1.36 ± .69b 0.0001 0.02 NS

Light-par-2 m 696.3 ± 16.16a 705.23 ± 18.10a 2,476.26 ± 25.07b 0.0001 0.0001 0.0001

Light-par-ground level 412.8 ± 17.2b 648.3 ± 17.64a 142.43 ± 17.88c 0.0001 NS 0.0013

pH 7.2 ± .16a 7.3 ± .2a 7.3 ± .17a NS NS NS

Least square means (±SE) and analyses of variance probabilities (P [ F) of the main effect of treatment (GRASS, REMOVAL, and
TREE). For each environmental factor not sharing letters [following least square means (±SE)] were significantly different
(P B 0.05)
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different than in GRASS plots was the woodland
species percent cover.

Backward stepwise regression indicated that

ground-light and soil moisture were important factors
in the analysis of the percent cover of prairie species.

This analysis indicated that as light availability at

ground level increased and soil moisture decreased,
the mean percent cover of prairie species increased.

These factors explained 62% of the variance in prairie

species percent cover. In contrast to prairie species,
the percent cover of woodland and non-native species

increased significantly with increasing soil moisture.

Similar to environmental factors, the species
composition in the TREE plots showed significant

differences based on slope position (Fig. 3). These

differences followed a relatively uniform pattern
based on plot position on the slope relative to the

eastern red cedar tree. The down slope position

showed significantly higher mean percent cover of
prairie species (Tukey’s HSD, P = 0.0002, down-

slope 41% vs. center 4%) while the up-slope position

was significantly higher in mean percent cover of
non-native species (P = 0.0001, up-slope = 30% vs.

down-slope 4%; Fig. 3) than any of the other slope

positions. The down-slope position showed the
highest level of ground light and lowest soil moisture

associated with an increase in prairie species and a

decrease in non-native species (Table 2; Fig. 3).

Discussion

Ecologists recognize that the invasion of new and

dominant species into open grassland and woodland
systems over the last century has been accompanied

by changes in ecosystem properties and species

composition (Gehring and Bragg 1992; Hoch and
Briggs 1998, Funk and Vitousek 2007; Knight et al.

2007). These impacts are similar to the invasion of

non-native invasive species such as buckthorn into
open woodland systems across the upper Midwest

(Knight et al. 2007). However, most such studies
were performed in areas with little topographic

variation or on abandoned agricultural fields, and

much less is known of woody plant invasion in steep
intact prairie systems, especially in dry, nutrient poor,

shallow soils that are unsuitable for agricultural

purposes. Additionally, to our knowledge there is no
information in print on how the affected areasT
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respond once the invader is removed. The results of
this study suggest that eastern red cedar invasion

affects steep slope systems in a complex manner

resulting from interactions with steep topography and
slope aspect, and that the native ecosystem has a

strong capacity for relatively rapid recovery once

cedar is removed. Furthermore these results provided
needed information on the links between the impacts

of species invasion on community structure and

ecosystem process (Levine et al. 2003). This infor-
mation can help further our understanding of the

general impacts of large scale native or non-native

species invasion in to dry nutrient poor systems and
help establish restoration and management priorities.

The effect of eastern red cedar presence

and removal on environmental factors

Many of the environmental variables measured were

significantly different under eastern red cedar trees

(Table 1). This is similar in some ways and different
in others compared to prior studies that found that

eastern red cedar affects the litter dynamics and light

environment of areas surrounding the tree (Engle
et al. 1987; Gehring and Bragg 1992) thus resulting in

changes in soil properties (Spurr 1940; Engle et al.

1987; Meiners and Gorchov 1998).
Studies have shown that this increase in canopy

cover with eastern red cedar can divert rain infiltration

Fig. 3 Mean percent cover
(±SE bars) of species
metric (prairie, woodland,
bareground, non-native) for
TREE (eastern red cedar
present) plots based on
slope position (Center, Up,
and Down)

Fig. 2 Mean percent cover
(±SE bars) of species
categories (prairie,
woodland, bare-ground,
non-native) for GRASS,
REMOVAL (eastern red
cedar removed), and TREE
(eastern red cedar present)
plots
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and result in lower soil moisture surrounding eastern
red cedar trees (Smith and Stubbendieck 1990).

Contrary to prior research, the current study indicates

higher soil moisture under eastern red cedar trees
(Table 1). This increase in soil moisture is likely

caused by the runoff from the upper portion of the

slope that allows moisture to reach the soil surface
under the eastern red cedar trees. The resulting soil

moisture may be retained longer under the eastern red

cedar due to reduced evaporation associated with the
lower light availability and/or due to differences in

‘‘forest’’ floor roughness, infiltration, and structure

resulting from cedar litter, root and shed branch
characteristics. This suggests that conclusions about

cedar effects based on studies in flat landscapes may

not always be useful in hilly terrain.
Soil moisture, soil temperature, and light penetra-

tion were altered primarily by the presence of the

eastern red cedar canopy; however, other environ-
mental factors were altered by the biogeochemical

impacts of the eastern red cedar or a combination of

canopy and biogeochemical impacts. The transfer of
Ca and other base cations from eastern red cedar litter

to soil shown in previous studies is the best expla-

nation for the increase in soil base-cations and pH in
the soils surrounding eastern red cedar (Broadfoot

and Pierre 1939; Spurr 1940; Bard 1952). However,

the results of the current study showed no significant
change in Ca and no change in pH under eastern red

cedar likely due to the initial high levels of base

cations in this system (Table 1).
Several studies have highlighted the role of species

composition in nutrient turnover rates in related

ecosystems (Wedin and Tilman 1990; Norris et al.
2001; Reich et al. 2001; Funk and Vitousek 2007;

Knight et al. 2007). The results of our study are,

however, contrary to some prior nearby research that
indicates higher N-mineralization under trees and

shrubs compared to adjacent grasslands (Zak et al.

1986; Reich et al. 2001). This likely involves the
evergreen conifer characteristics of eastern red cedar

(including low litter N concentrations, Norris et al.
2001) whereas these other nearby studies have

focused on deciduous woody angiosperms with

higher litter N levels. The differences in net N-
mineralization and net nitrification measurements

recorded between treatments (GRASS, REMOVAL,

and TREE plots) are likely caused by a combination
of changes in micro-environment (loss of understory

vegetation and runoff), litter quality (decrease in the
fraction of C4 grasses and increase in eastern red

cedar litter), and other plant inputs resulting from

changes in species composition.

Slope position around eastern red cedar tree

Because of the steep topography of these prairies,

slope position around the tree likely influences the

impact eastern red cedar has on the environmental
factors measured at a specific area. The difference

between tree and non-tree plots in factors such as soil

base-cations is enhanced down-slope perhaps because
of the mobility of these base-cations in runoff as it

moves down the slope. Once it reaches the down-

slope position the runoff may slow and infiltrate into
the soil due to increases in understory percent cover,

concentrating more of the base-cations released from

the eastern red cedar litter in the down-slope area.
However, other factors such as light availability, soil

moisture, soil temperature, and net N-mineralization

that are affected by eastern red cedar presence were
not significantly different between the down-slope

position of TREE plots and the GRASS plots. The

irradiance in the down slope position plots is
presumably less affected, and the up slope position

more affected, by the canopy of the eastern red cedar

tree due to the angle of the sun as it hits the slope
with south and southwest facing aspects. This shadow

effect is the result of the dense and low canopy of

eastern red cedar and the sun’s angle relative to the
tree. This study indicates that the magnitude of the

effect of the eastern red cedar presence on the bluff

prairie system is altered by the slope position around
the tree through a combination of light availability

due to canopy cover and slope aspect, and possibly

runoff due to slope steepness or differential root
water uptake based on slope position. These results

emphasize the impact of invasion from a micro-scale,

slope position, to a larger local scale, prairie compo-
sition, and potentially a regional scale as outlined by

Pauchard and Shea (2006).

Eastern red cedar removal

Removal of eastern red cedar trees allowed us to

verify that cedar was affecting the environmental

factors measured and to assess how quickly these
factors recovered to levels measured in the grass
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patches. All variables measured were affected by the
removal of eastern red cedar, increasing or decreasing

in the direction of those recorded in the GRASS plots

(Table 1). These findings give considerable support
to (Q1), since many of the soil properties that

continued to differ significantly from those found in

GRASS plots should recover with time. The results of
the removal experiment also provide insight into how

this system will respond to restoration efforts. The

resilience of dry prairie and oak savanna systems
have been noted by other studies (Collada and Haney

1998; Leach and Givnish 1998) examining the

potential to restore oak savanna systems noting a
legacy response of the seed bank in dry sandy soils

once invasive woody vegetation is removed. Bates

et al. (2000) found a similar increase in understory
response with the removal of western juniper (Juni-
perous occidentalis) in the sagebrush steppe of

southeastern Oregon. Ansley and Rasmussen (2005)
indicated that herbaceous vegetation recovery took at

least 3 years once eastern red cedar was removed

from dense ([40% bare-ground) stands highlighting
the importance of early restoration efforts.

The effect of eastern red cedar on plant
composition and distribution

The presence of eastern red cedar enhanced soil
moisture and reduced soil temperature, light avail-

ability, and net N-mineralization and net nitrification

(Table 1). How do these changes affect plant com-
position and distribution within the bluff prairie

system? The presence of eastern red cedar was

associated with higher percent cover of non-natives,
woodland species, and bare-ground, and lower prairie

species percent cover. These findings are supported

by previous studies that have shown that the presence
of eastern red cedar reduces understory percent cover

in grassland systems by as much as 83% (Bard 1952;

Gehring and Bragg 1992; Engle et al. 1987; Smith
and Stubbendieck 1990).

This study suggests that prairie species percent
cover decreases in the presence of eastern red cedar

likely due to the trees’ effect on soil moisture and

light availability in conjunction with competition
whereas woodland and non-native species percent

cover increases in the presence of eastern red cedar

due to the trees’ influence on soil moisture (Table 1;
Fig. 2). The down slope position of the TREE plots

had higher percent cover of prairie species likely
because of elevated light availability in the down

slope position caused by the slope and southern

aspect of these prairies. In contrast, the higher non-
native percent cover (mainly buckthorn and honey-

suckle) in the up-slope position was likely attributed

to the higher soil moistures measured in the up-slope
positions (Table 2). This may indicate that non-native

woody species are limited by soil moisture conditions

in other areas of the bluff prairie system which
follows the hypothesis (Johnston 1986) that invasion

of species into a community may be the result of

removal of a barrier that has previously excluded the
species (i.e., low soil moisture).

These results provide insight into the role of eastern

red cedar in the facilitation of changes in species
composition of the bluff prairie system (Table 1).

Eastern red cedar is often the first tree species to

become established in grassland systems, likely
attributable to seed distribution by birds and its ability

to grow in low moisture environments (Bazzaz 1968;

Livingston 1972; Bragg and Hulbert 1976). Some
researchers have conjectured that eastern red cedar

may facilitate the establishment of other tree and shrub

species through alterations in soil temperature (Broad-
foot and Pierre 1939; Bard 1952; Bazzaz 1968).

Siemann and Rogers (2003) discuss the changes in

light and nitrogen that result after Sapium sebiferum
and the native Celtis laevigata invade grasslands in the

southern US as the mechanism involved in facilitating

further tree invasions. The interplay between eastern
red cedar, slope position and aspect, and soil moisture

in the bluff prairie system may result in higher non-

native species invasion compared to other grassland
systems due to the likely facilitative effects of

increased moisture on non-native species percent

cover mainly Ramnus cathartica (buckthorn). Facili-
tation of one invasive species by another due to

increasing supply of a limiting resource, increasing

habitat complexity, or providing an escape from
competitors has been noted in both native and non-

native species invasions (Jordan and Larson 2008;
Reinhart et al. 2006; Rodriguez 2006).

Summary

In conclusion, this study demonstrated that eastern

red cedar presence affects the bluff prairie system
through changes in light availability, soil properties,
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and nutrient dynamics. Slope position played a
significant role in the patterns observed. In some

ways the bluff prairie system seems to function

similarly to other grassland systems where woody
vegetation invasion has been shown to influence

compositional and some environmental factors. How-

ever, important differences found in the bluffland
region and other karst areas across the country, such

as the steep slopes and the limestone and dolomite

geology, override some of these previously noted
effects of the eastern red cedar invasion. The steep

slope alters the invasion pattern of non-native and

woodland species and environmental factors such as
soil moisture, temperature, light penetration, and

prairie composition in the down slope position. The

limestone and dolomite geology of the system may
result in high baseline calcium and other base cations

buffering the effect of eastern red cedar invasion on

the pH of the soil. These results clarify some of the
pathways or mechanisms that underlie the impacts of

species invasion on this dry nutrient poor system

(Levine et al. 2003). Also unique to this study and
others conducted on dry sandy soils was the finding

that once eastern red cedar is removed, the area

affected by the tree approaches measurements found
in the grass areas. While these results indicate that the

bluff prairie system is affected by the invasion of

eastern red cedar they also suggest that if restoration
efforts are undertaken the interaction between the

steep slope and the eastern red cedar may provide

resilience to these systems allowing more time before
an alternative stable state is reached (Frelich and

Reich 1999). This ability for the system to recover

provides the potential for an effective and efficient
restoration. However, as restoration efforts occur, the

interaction between the steep slope and the eastern

red cedar must be considered carefully so that issues
such as runoff, erosion, and the differential effects,

depending on slope position, of the eastern red cedar

can be addressed.
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